To find W⊥, you can use the Gram-Schmidt process using the usual inner-product and the given 5 independent set of vectors.
<span>Define projection of v on u as </span>
<span>p(u,v)=u*(u.v)/(u.u) </span>
<span>we need to proceed and determine u1...u5 as: </span>
<span>u1=w1 </span>
<span>u2=w2-p(u1,w2) </span>
<span>u3=w3-p(u1,w3)-p(u2,w3) </span>
<span>u4=w4-p(u1,w4)-p(u2,w4)-p(u3,w4) </span>
<span>u5=w5-p(u4,w5)-p(u2,w5)-p(u3,w5)-p(u4,w5) </span>
<span>so that u1...u5 will be the new basis of an orthogonal set of inner space. </span>
<span>However, the given set of vectors is not independent, since </span>
<span>w1+w2=w3, </span>
<span>therefore an orthogonal basis cannot be found. </span>
a. a=40° (alternate interior angles)
b+40°=180°( supplementary angles)
b=140°
c= d= 140°( vertically opposite angles)
d=b=140°( corresponding angles)
b. 2a+120°=180° (supplementary angles)
2a=60°
a=30°
c. a+110°=180°( supplementary angles)
a=70°
b+70°=180°( supplementary angles)
b=110°
c+110°=180°( supplementary angles)
c=70°
c=d=70( corresponding angles)
Answer:
A.) Baby A
The first one
Step-by-step explanation:
have a good day
<u>Step</u><u> </u><u>1</u>
given
<u>Step</u><u> </u><u>2</u>

<u>Step</u><u> </u><u>3</u>

Reason: Reflexive property
<u>Step</u><u> </u><u>4</u>
ASA
Answer:
Step-by-step explanation: what are the dimensions