1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
viva [34]
3 years ago
13

Raphael deposited $6,500 in an account that pays 4.25% interest, compounded annually. He left the money in the account for 4 yea

rs, without depositing money to it or withdrawing money from it. At the end of the 4 years, how much interest in dollars and cents did the account earn? Record your answer and fill in the bubbles on your answer document. Be sure to use the correct place value.
Mathematics
1 answer:
creativ13 [48]3 years ago
5 0

Answer:

$104,000.00

I tried, but I'm not a math whiz or anything.

You might be interested in
A rock thrown vertically upward from the surface of the moon at a velocity of 36​m/sec reaches a height of s = 36t - 0.8 t^2 met
Verdich [7]

Answer:

a. The rock's velocity is v(t)=36-1.6t \:{(m/s)}  and the acceleration is a(t)=-1.6  \:{(m/s^2)}

b. It takes 22.5 seconds to reach the highest point.

c. The rock goes up to 405 m.

d. It reach half its maximum height when time is 6.59 s or 38.41 s.

e. The rock is aloft for 45 seconds.

Step-by-step explanation:

  • Velocity is defined as the rate of change of position or the rate of displacement. v(t)=\frac{ds}{dt}
  • Acceleration is defined as the rate of change of velocity. a(t)=\frac{dv}{dt}

a.

The rock's velocity is the derivative of the height function s(t) = 36t - 0.8 t^2

v(t)=\frac{d}{dt}(36t - 0.8 t^2) \\\\\mathrm{Apply\:the\:Sum/Difference\:Rule}:\quad \left(f\pm g\right)'=f\:'\pm g'\\\\v(t)=\frac{d}{dt}\left(36t\right)-\frac{d}{dt}\left(0.8t^2\right)\\\\v(t)=36-1.6t

The rock's acceleration is the derivative of the velocity function v(t)=36-1.6t

a(t)=\frac{d}{dt}(36-1.6t)\\\\a(t)=-1.6

b. The rock will reach its highest point when the velocity becomes zero.

v(t)=36-1.6t=0\\36\cdot \:10-1.6t\cdot \:10=0\cdot \:10\\360-16t=0\\360-16t-360=0-360\\-16t=-360\\t=\frac{45}{2}=22.5

It takes 22.5 seconds to reach the highest point.

c. The rock reach its highest point when t = 22.5 s

Thus

s(22.5) = 36(22.5) - 0.8 (22.5)^2\\s(22.5) =405

So the rock goes up to 405 m.

d. The maximum height is 405 m. So the half of its maximum height = \frac{405}{2} =202.5 \:m

To find the time it reach half its maximum height, we need to solve

36t - 0.8 t^2=202.5\\36t\cdot \:10-0.8t^2\cdot \:10=202.5\cdot \:10\\360t-8t^2=2025\\360t-8t^2-2025=2025-2025\\-8t^2+360t-2025=0

For a quadratic equation of the form ax^2+bx+c=0 the solutions are

x_{1,\:2}=\frac{-b\pm \sqrt{b^2-4ac}}{2a}

\mathrm{For\:}\quad a=-8,\:b=360,\:c=-2025:\\\\t=\frac{-360+\sqrt{360^2-4\left(-8\right)\left(-2025\right)}}{2\left(-8\right)}=\frac{45\left(2-\sqrt{2}\right)}{4}\approx 6.59\\\\t=\frac{-360-\sqrt{360^2-4\left(-8\right)\left(-2025\right)}}{2\left(-8\right)}=\frac{45\left(2+\sqrt{2}\right)}{4}\approx 38.41

It reach half its maximum height when time is 6.59 s or 38.41 s.

e. It is aloft until s(t) = 0 again

36t - 0.8 t^2=0\\\\\mathrm{Factor\:}36t-0.8t^2\rightarrow -t\left(0.8t-36\right)\\\\\mathrm{The\:solutions\:to\:the\:quadratic\:equation\:are:}\\\\t=0,\:t=45

The rock is aloft for 45 seconds.

5 0
4 years ago
What times blank equal 90 and a 100
torisob [31]

Answer:

10x9=90

10x10=100

Step-by-step explanation:

4 0
3 years ago
Read 2 more answers
Enter the equivalent distance in km in the box.
devlian [24]
100 cm = 1m

To find 60 000cm, multiply by 600 :
60 000 cm = 600m                

To convert from m to km, divide by 1000 :
600m ÷ 1000 = 0.6km                        
3 0
3 years ago
Question:
12345 [234]

Answer:

A. Area in square inches =  1760 square inches

B. Area in square feet = 12.2 square feet

C. 1 square inch = \frac{1}{144} feet

Step-by-step explanation:

Given,

Length of the rectangle (l) = 55 inches

Breath of the rectangle (b) = 32 inches

A. Area of the rectangle = length × breath

⇒ 55 × 32

⇒ 1760 square inches

Area in square inches =  1760 square inches

B. 1 foot = 12 inches

1 inch = \frac{1}{12} feet

1 square inch = \frac{1}{144} feet

∴ 1760 square inches = \frac{1760}{144} feet

⇒ 12.2222 square feet

Area in square feet = 12.2 square feet

C. 1 square inch = \frac{1}{144} feet

8 0
3 years ago
Prove that XR is equivalent to YP by using the terms in geometry, its just proofs
Sophie [7]
PQRS is a parallelogram                   Given
SR=PQ                                               property of parallelogram
m∠S=m∠Q                                         property of parallelogram
SP=QR                                               property of parallelogram
XP=RY                                               given
SP-XP=QR-RY                                  substitution
SX=QY                                              segment subtraction
ΔSRX is conggruent to ΔQPY           SAS theorem (side-angle-side)
XR=YP                                              CPCTC (corresponding parts of                                                                          congruent triangles are congruent)

3 0
3 years ago
Other questions:
  • Explain why (1/2)4 =1/16
    9·2 answers
  • You have read 100 pages of a 250 page book. You have 3 days left to finish the book. How many pages will you need to read each d
    13·2 answers
  • Express the terms of the following sequence by giving a recursive formula.
    11·1 answer
  • What is the answer to this?
    8·1 answer
  • The gardening club kept track of how many seeds each student planted. How many students planted more than two seeds?
    9·1 answer
  • (Will give medal!!!) Which shows solutions to x + 2y = 8 if x and y must be whole numbers.. . . . A.. {(8, 0), (6, 1), (4, 2)}.
    13·2 answers
  • Help....................
    13·1 answer
  • 50 points!
    5·2 answers
  • Need help ASAP!!!!!!
    14·1 answer
  • Can somebody help me out please !
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!