Answer:
ff
Step-by-step explanation:
fff
Answer:
36/59 or 0.610
Step-by-step explanation:
P(female and degree)/P(degree)
72/118
36/59
0r 0.610
Answer:
![\displaystyle T'( 2,4)](https://tex.z-dn.net/?f=%20%5Cdisplaystyle%20T%27%28%20%202%2C4%29)
![\displaystyle U'( 1,1)](https://tex.z-dn.net/?f=%20%5Cdisplaystyle%20U%27%28%201%2C1%29)
![\displaystyle S' ( 3,2)](https://tex.z-dn.net/?f=%20%5Cdisplaystyle%20S%27%20%28%203%2C2%29)
Step-by-step explanation:
we current vertices of the given triangle
remember that,
![\rm\displaystyle(x,y) \xrightarrow{ \rm reflection \: over \: y - axis}( - x,y)](https://tex.z-dn.net/?f=%20%20%5Crm%5Cdisplaystyle%28x%2Cy%29%20%5Cxrightarrow%7B%20%5Crm%20reflection%20%5C%3A%20%20over%20%5C%3A%20y%20-%20axis%7D%28%20-%20%20x%2Cy%29)
so we obtain:
![\rm\displaystyle \: T( - 2,4) \xrightarrow{ \rm reflection \: over \: y - axis}T'( 2,4)](https://tex.z-dn.net/?f=%20%20%5Crm%5Cdisplaystyle%20%5C%3A%20T%28%20-%202%2C4%29%20%5Cxrightarrow%7B%20%5Crm%20reflection%20%5C%3A%20%20over%20%5C%3A%20y%20-%20axis%7DT%27%28%20%202%2C4%29)
![\rm\displaystyle \: U( - 1,1) \xrightarrow{ \rm reflection \: over \: y - axis}U' ( 1,1)](https://tex.z-dn.net/?f=%20%20%5Crm%5Cdisplaystyle%20%5C%3A%20U%28%20-%201%2C1%29%20%5Cxrightarrow%7B%20%5Crm%20reflection%20%5C%3A%20%20over%20%5C%3A%20y%20-%20axis%7DU%27%20%28%201%2C1%29)
![\rm\displaystyle S( - 3,2) \xrightarrow{ \rm reflection \: over \: y - axis}S'( 3,2)](https://tex.z-dn.net/?f=%20%20%5Crm%5Cdisplaystyle%20S%28%20-%203%2C2%29%20%5Cxrightarrow%7B%20%5Crm%20reflection%20%5C%3A%20%20over%20%5C%3A%20y%20-%20axis%7DS%27%28%203%2C2%29)
To find slope, use the formula:
(y2-y1)/x2-x1)
So here is what it will look like:
(9--7)/(1--3)
Since you are subtracting a negative, then it turns unto a positive so you are adding the numbers together.
(9+7)/1+3)
16/4
4
The slope of the line is 4/1 or 4. Which means that you will go up or "rise" 4 and go to the left or "run" 1.
Hope this helps!
Answer:
B, or second answer choice
Step-by-step explanation:
y -
= m(x -
)
y - 1/3 = 3/4 (x - 4)
B