Answer:
The 95% confidence interval for the percentage of all boards in this shipment that fall outside the specification is (1.8%, 6.2%).
Step-by-step explanation:
In a random sample of 300 boards the number of boards that fall outside the specification is 12.
Compute the sample proportion of boards that fall outside the specification in this sample as follows:

The (1 - <em>α</em>)% confidence interval for population proportion <em>p</em> is:

The critical value of <em>z</em> for 95% confidence level is,

*Use a <em>z</em>-table.
Compute the 95% confidence interval for the proportion of all boards in this shipment that fall outside the specification as follows:

Thus, the 95% confidence interval for the proportion of all boards in this shipment that fall outside the specification is (1.8%, 6.2%).
The predicted time remaining has decreased by 30 years, so the second one would be the answer
Answer:
in this form, the "-r" would cause the result to decrease
I assume that the answer is "r"
if r = .1 (10 %) then 1-.1 = .9
if you have 100 items then y = 100(.9)^1 = 90
the total decreased by 10% ... y = 100(.9)^2 after 2 time periods
Step-by-step explanation:
Answer:
y=1/3 -4
Step-by-step explanation:
use y2-y1/ x2-x1
2-1/2-+1 + 1/3