Answer:
Step-by-step explanation:
<u>Initial value of house:</u>
<u>Yearly increase rate of value:</u>
<u>Time </u>
Since the increase is concerning the current price it would be exponential growth.
<u>The function would be:</u>
- V(t) = 184000*(1 + 3.5/100)^t, where V is the value after t years
<u>For t= 13 we get:</u>
- V(13) = 184000*(1.035)^13 = 287800
<u>Profit made would be:</u>
Correct option is D.
I guess A i don't know hope the answer is correct
Answer:
(a) 0.20
(b) 31%
(c) 2.52 seconds
Step-by-step explanation:
The random variable <em>Y</em> models the amount of time the subject has to wait for the light to flash.
The density curve represents that of an Uniform distribution with parameters <em>a</em> = 1 and <em>b</em> = 5.
So, 
(a)
The area under the density curve is always 1.
The length is 5 units.
Compute the height as follows:


Thus, the height of the density curve is 0.20.
(b)
Compute the value of P (Y > 3.75) as follows:
![P(Y>3.75)=\int\limits^{5}_{3.75} {\frac{1}{b-a}} \, dy \\\\=\int\limits^{5}_{3.75} {\frac{1}{5-1}} \, dy\\\\=\frac{1}{4}\times [y]^{5}_{3.75}\\\\=\frac{5-3.75}{4}\\\\=0.3125\\\\\approx 0.31](https://tex.z-dn.net/?f=P%28Y%3E3.75%29%3D%5Cint%5Climits%5E%7B5%7D_%7B3.75%7D%20%7B%5Cfrac%7B1%7D%7Bb-a%7D%7D%20%5C%2C%20dy%20%5C%5C%5C%5C%3D%5Cint%5Climits%5E%7B5%7D_%7B3.75%7D%20%7B%5Cfrac%7B1%7D%7B5-1%7D%7D%20%5C%2C%20dy%5C%5C%5C%5C%3D%5Cfrac%7B1%7D%7B4%7D%5Ctimes%20%5By%5D%5E%7B5%7D_%7B3.75%7D%5C%5C%5C%5C%3D%5Cfrac%7B5-3.75%7D%7B4%7D%5C%5C%5C%5C%3D0.3125%5C%5C%5C%5C%5Capprox%200.31)
Thus, the light will flash more than 3.75 seconds after the subject clicks "Start" 31% of the times.
(c)
Compute the 38th percentile as follows:

Thus, the 38th percentile is 2.52 seconds.
Answer: 2
<u>Step-by-step explanation:</u>
You only need to evaluate at the limit point.
f(x) = 4 - x ; x ≠ 2
Consider the solution if x = 2 (because the limit is x → 2)
f(2) = 4 - (2)
= 2
We know that f(x) = 0 ; x = 2
f(2) = 0
but we are looking for the y- value it approaches - not the y-value it is.
Look at the graph. You will see that as x gets closer and closer to 2, the y-value gets closer and closer to 2. This is the limit.
Answer:
yes
Step-by-step explanation: