Answer:
and
.
Step-by-step explanation:
If we have to different functions like the ones attached, one is a parabolic function and the other is a radical function. To know where
, we just have to equalize them and find the solution for that equation:

So, applying the zero product property, we have:
![x=0\\x^{3}-1=0\\x^{3}=1\\x=\sqrt[3]{1}=1](https://tex.z-dn.net/?f=x%3D0%5C%5Cx%5E%7B3%7D-1%3D0%5C%5Cx%5E%7B3%7D%3D1%5C%5Cx%3D%5Csqrt%5B3%5D%7B1%7D%3D1)
Therefore, these two solutions mean that there are two points where both functions are equal, that is, when
and
.
So, the input values are
and
.
QUESTION 3
The sum of the interior angles of a kite is
.
.
.
.
.
But the two remaining opposite angles of the kite are congruent.

.
.
.
.
QUESTION 4
RH is the hypotenuse of the right triangle formed by the triangle with side lengths, RH,12, and 20.
Using the Pythagoras Theorem, we obtain;





QUESTION 5
The given figure is an isosceles trapezium.
The base angles of an isosceles trapezium are equal.
Therefore
QUESTION 6
The measure of angle Y and Z are supplementary angles.
The two angles form a pair of co-interior angles of the trapezium.
This implies that;



QUESTION 7
The sum of the interior angles of a kite is
.
.
.
.
.
But the two remaining opposite angles are congruent.

.
.
.
.
QUESTION 8
The diagonals of the kite meet at right angles.
The length of BC can also be found using Pythagoras Theorem;




QUESTION 9.
The sum of the interior angles of a trapezium is
.
.
.
But the measure of angle M and K are congruent.
.
.
.
.
The only option that fits is E, because:
f(10)=4×10+10=50