Given:
The vertices of a quadrilateral ABCD are A(0, 4), B(4, 1), C(1, -3), and D(-3, 0).
To find:
The perimeter of quadrilateral ABCD.
Solution:
Distance formula:
![d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}](https://tex.z-dn.net/?f=d%3D%5Csqrt%7B%28x_2-x_1%29%5E2%2B%28y_2-y_1%29%5E2%7D)
Using the distance formula, we get
![AB=\sqrt{(4-0)^2+(1-4)^2}](https://tex.z-dn.net/?f=AB%3D%5Csqrt%7B%284-0%29%5E2%2B%281-4%29%5E2%7D)
![AB=\sqrt{(4)^2+(-3)^2}](https://tex.z-dn.net/?f=AB%3D%5Csqrt%7B%284%29%5E2%2B%28-3%29%5E2%7D)
![AB=\sqrt{16+9}](https://tex.z-dn.net/?f=AB%3D%5Csqrt%7B16%2B9%7D)
![AB=\sqrt{25}](https://tex.z-dn.net/?f=AB%3D%5Csqrt%7B25%7D)
![AB=5](https://tex.z-dn.net/?f=AB%3D5)
Similarly,
![BC=\sqrt{(1-4)^2+(-3-1)^2}](https://tex.z-dn.net/?f=BC%3D%5Csqrt%7B%281-4%29%5E2%2B%28-3-1%29%5E2%7D)
![BC=5](https://tex.z-dn.net/?f=BC%3D5)
![CD=\sqrt{(-3-1)^2+(0-(-3))^2}](https://tex.z-dn.net/?f=CD%3D%5Csqrt%7B%28-3-1%29%5E2%2B%280-%28-3%29%29%5E2%7D)
![CD=5](https://tex.z-dn.net/?f=CD%3D5)
And,
![AD=\sqrt{(-3-0)^2+(0-4)^2}](https://tex.z-dn.net/?f=AD%3D%5Csqrt%7B%28-3-0%29%5E2%2B%280-4%29%5E2%7D)
![AD=5](https://tex.z-dn.net/?f=AD%3D5)
Now, the perimeter of the quadrilateral ABCD is:
![P=AB+BC+CD+AD](https://tex.z-dn.net/?f=P%3DAB%2BBC%2BCD%2BAD)
![P=5+5+5+5](https://tex.z-dn.net/?f=P%3D5%2B5%2B5%2B5)
![P=20](https://tex.z-dn.net/?f=P%3D20)
Therefore, the perimeter of the quadrilateral ABCD is 20 units.