As y varies directly with x, there is a proportionality constant. As x increases by that certain constant, y also increases. We equate:
y = kx
where k = proportionality constant.
Given the condition, y = 5 when x = 4, then we solve for k:
5 = k(4)
k = 5/4 or 1.25
When y = 8, then
8 = (5/4)(x)
x = 8/(5/4) = (8)(4/5) = 32/5 or 6.4 (ANSWER)
Answer:1,000,000
Step-by-step explanation:THERE U GO :)
Answer:
Step-by-step explanation:
In ordered pairs (a,b) a is the x value and b is a y value.
if we have 3x+y=6
if x=0, y=6 --> (0,6)
if y=0, x=2 -->(2,0)
if x=3, y=-3--> (3, -3)
if x=6, y= -12 --->(6, -12)
if x=6, y= -9 ---> (5, -9)
A(t)=A0*(1/2)^(t/30)
where t=elapsed years
A0=initial mass at t=0.
Answer:
3
Step-by-step explanation:
lim(t→∞) [t ln(1 + 3/t) ]
If we evaluate the limit, we get:
∞ ln(1 + 3/∞)
∞ ln(1 + 0)
∞ 0
This is undetermined. To apply L'Hopital's rule, we need to rewrite this so the limit evaluates to ∞/∞ or 0/0.
lim(t→∞) [t ln(1 + 3/t) ]
lim(t→∞) [ln(1 + 3/t) / (1/t)]
This evaluates to 0/0. We can simplify a little with u substitution:
lim(u→0) [ln(1 + 3u) / u]
Applying L'Hopital's rule:
lim(u→0) [1/(1 + 3u) × 3 / 1]
lim(u→0) [3 / (1 + 3u)]
3 / (1 + 0)
3