NOT NECESSARILY would a triangle be equilateral if one of its angles is 60 degrees. To be an equilateral triangle (a triangle in which all 3 sides have the same length), all 3 angles of the triangle would have to be 60°-angles; however, the triangle could be a 30°-60°-90° right triangle in which the side opposite the 30 degree angle is one-half as long as the hypotenuse, and the length of the side opposite the 60 degree angle is √3/2 as long as the hypotenuse. Another of possibly many examples would be a triangle with angles of 60°, 40°, and 80° which has opposite sides of lengths 2, 1.4845 (rounded to 4 decimal places), and 2.2743 (rounded to 4 decimal places), respectively, the last two of which were determined by using the Law of Sines: "In any triangle ABC, having sides of length a, b, and c, the following relationships are true: a/sin A = b/sin B = c/sin C."¹
Ooh, fun
what I would do is to make it a piecewise function where the absolute value becomse 0
because if you graphed y=x^2+x-12, some part of the garph would be under the line
with y=|x^2+x-12|, that part under the line is flipped up
so we need to find that flipping point which is at y=0
solve x^2+x-12=0
(x-3)(x+4)=0
at x=-4 and x=3 are the flipping points
we have 2 functions, the regular and flipped one
the regular, we will call f(x), it is f(x)=x^2+x-12
the flipped one, we call g(x), it is g(x)=-(x^2+x-12) or -x^2-x+12
so we do the integeral of f(x) from x=5 to x=-4, plus the integral of g(x) from x=-4 to x=3, plus the integral of f(x) from x=3 to x=5
A.
B.
sepearte the integrals
next one
the last one you can do yourself, it is
the sum is
so the area under the curve is
Answer: Second option is correct.
Explanation:
Since we have given that
And
To find the remainder, we use the Remainder Theorem, which states that when f(x) is divided by (x-c) then the f(c) is the required remainder.
So,
Here, we have,
So, we will find f(-2) which will give us the required remainder,
Hence, Second option is correct.
7/8 because 3/4 = 6/8, and 7/8 is bigger than 6/8
Answer:
MLH is congruent to JKI
LNK is congruent to HNI
I think that's how you're supposed to answer it...