Answer:
is outside the circle of radius of
centered at
.
Step-by-step explanation:
Let
and
denote the center and the radius of this circle, respectively. Let
be a point in the plane.
Let
denote the Euclidean distance between point
and point
.
In other words, if
is at
while
is at
, then
.
Point
would be inside this circle if
. (In other words, the distance between
and the center of this circle is smaller than the radius of this circle.)
Point
would be on this circle if
. (In other words, the distance between
and the center of this circle is exactly equal to the radius of this circle.)
Point
would be outside this circle if
. (In other words, the distance between
and the center of this circle exceeds the radius of this circle.)
Calculate the actual distance between
and
:
.
On the other hand, notice that the radius of this circle,
, is smaller than
. Therefore, point
would be outside this circle.
Answer:
Step-by-step explanation:
First solve the length of side BC, CD, EF and FA
Since BC = CD = sqrt( 10^2 + 10^2)
BC = CD = 14.1421
FA = EF = sqrt(10^2 + 20^2)
= 23.3607
So the perimeter = 10 + 10 + 14.1421 + 14.1421 + 23.3607
= 93
The area is made up be triangle FAE, rectangle ABDE and
triangle BCD
A = 0.5(20)(20) + (10)(20) + 0.5(20)(10)
<span>A = 500 sq units</span>
Answer:
y = -8/9
Step-by-step explanation:
2 ×(7) - 9 y = 22
14 - 9y = 22
9 y = -8
y = -8/9
Answer:
y = -3x -2
Step-by-step explanation:
parallel lines have same slope
line d: slope (m) = -3
y intercept (b) = -2
equation y = mx + b y = -3x -2