Answer:
20.67 kcal of energy is released.
Explanation:
It is given that, an exothermic reaction releases 86.5 kJ. We need to convet kJ to calories.
Since,
1 kcal = 4.184 kJ
So,
1 kJ = 0.239 kcal
For 86.5 kJ,
86.5 kJ = (0.239 × 86.5) kcal
86.5 kJ = 20.67 kcal
So, 20.67 kcal of energy is released.
<span>The ammonia molecules have weaker inter molecular bonds then the hydrogen and nitrogen, this means that the ammonia condensed at a lower temperature so will be a liquid that will be separated from the reaction, while the nitrogen and hydrogen remain as gases so are easy are recycle back into the reacting chamber.</span>
The ranges given are 4 × 10^14 to 7.5 × 10^14 Hz. At these frequencies, visible light type of waves are found in this region. This occurs at a wavelength of 400 - 700 nanometers and a color of violet through red. Outside this range, the naked eye cannot see the waves.
Answer: average speed
Explanation: describes speed of motion when speed is changing.
The question is incomplete, here is the complete question:
Calculate the volume in liters of a 0.13 M potassium dichromate solution that contains 200. g of potassium dichromate . Round your answer to 2 significant digits.
<u>Answer:</u> The volume of solution is 5.2 L
<u>Explanation:</u>
To calculate the volume of solution, we use the equation used to calculate the molarity of solution:

We are given:
Molarity of solution = 0.13 M
Given mass of potassium dichromate = 200. g
Molar mass of potassium dichromate = 294.15 g/mol
Putting values in above equation, we get:

Hence, the volume of solution is 5.2 L