Answer:
Raster Image Correlation Spectroscopy (RICS) is a novel new technique for measuring molecular dynamics and confocal fluorescence imaging concentrations. RICS technique extracts information on molecular dynamics and concentrations of live cell images taken in commercial confocal systems
Explanation:
RICS analysis must be performed on images acquired through raster scanning. Laser scanning microscopes generate images by measuring the fluorescence intensity in one area of a pixel at a time (a 'pixel' in this context does not have the same definition as a pixel in computer graphics, but refers to a measurement of localized intensity). The value of a pixel is obtained by illuminating a region of the sample with the focal volume of a laser beam and measuring the intensity of the fluorescence emitted. The laser beam moves to a new location and a new pixel is recorded. Each pixel can be considered to correspond to a region of the sample, with its width (called pixel size) defined by the distance the beam moves between measurements. This means that the size of a pixel is separate and independent from the size of the focal volume of the laser beam.
We will use Arrehenius equation
lnK = lnA -( Ea / RT)
R = gas constant = 8.314 J / mol K
T = temperature = 25 C = 298 K
A = frequency factor
ln A = ln (1.5×10 ^11) = 25.73
Ea = activation energy = 56.9 kj/mol = 56900 J / mol
lnK = 25.73 - (56900 / 8.314 X 298) = 2.76
Taking antilog
K = 15.8
Answer:
Step 1 should be convert atoms to moles (n). Step 2 should be convert moles (n) to mass (m).
Step 1
Use dimensional analysis to convert the number of atoms to moles.
1 mole atoms = 6.022 × 10²³ atoms
n(Ag) = 2.3 × 10²⁴ Ag atoms × (1 mol Ag/6.022 × 10²³ Ag atoms) = 3.8193 mol Ag
Step 2
Convert the moles of Ag to mass.
mass (m) = moles (n) × molar mass (M)
n(Ag) = 3.8193 mol Ag
M(Ag) = atomic weight on the periodic table in g/mol = 107.868 g Ag/mol Ag
m(Ag) = 3.8193 mol × 107.868 g/mol = 412 g Ag = 410 g Ag rounded to two significant figures
The mass of 2.3 × 10²⁴ Ag atoms is approximately 410 g.
Explanation:
Answer:
Eletrical
Explanation:
The electric transfers 70% of the input energy to kinetic energy 30% is wasted output energy in the form of thermal energy and sound.