One way to go about this is to first list everything we know in the form of variables. This will make it easier to see how these numbers correlate instead of trying to remember formulas to plug these numbers into.
TimeA = 2.4h (time of Car A to travel)
TimeB = 4h (time of Car B to travel)
SpeedA = SpeedB + 22mph (Speed of Car A<span>)
</span>SpeedB = SpeedA - 22mph (Speed of Car B<span>)
</span>Distance = x (the distance traveled by each car)
We are looking for SpeedA. How can we find this? Well, we know that speed multiplied by time is equal to distance, so let's start there.
SpeedA * 2.4h = x
<span>(SpeedB + 22mph) * 2.4h = x
</span>(2.4h * SpeedB) + 52.8miles = x
We also know that:
SpeedB * 4h = x
Since both of these equations are equal to x, we can combine them:
SpeedB * 4h = x = <span>(2.4h * SpeedB) + 52.8miles
</span>SpeedB * 4h = <span>(2.4h * SpeedB) + 52.8miles
</span>1.6h * Speed B = 52.8miles
SpeedB = 52.8/1.6 mph = 33 mph
<span>SpeedA = SpeedB + 22mph = 33mph + 22mph = 55mph
</span>
Therefore, Car A was traveling at 55mph.
Answer:
13
Step-by-step explanation:
15 - 4 + 7 - 5 = 13
Simply expand the brackets and subtract and add accordingly.
There's no picture but soon as you add one so I can see what I'm answering then I will immediately help!
Answer:
x = - 
Step-by-step explanation:
Given
x + 2 = 
Multiply through by 24 ( the LCM of 6 and 8 ) to clear the fractions
20x + 48 = 21 ( subtract 48 from both sides )
20x = - 27 ( divide both sides by 20 )
x = - 