Answer:
P=500
Step-by-step explanation:
My reasoning is multiply 0.05 and 2 and you get 0.1. Then you divide 0.1 out of 50 and get 500. Too check the answer you take 500 and multiply it by 0.05 and then multiply it by 2 and you should get an answer of 50 like it says in the equation.
Answer:
x < 15
Step-by-step explanation:
- 3 < 0 ( add 3 to both sides )
< 3 ( multiply both sides by 5 to clear the fraction )
x < 15
Corner points in this graph are: ( 0,0 ) ( 0,8 ) ( 5,6 ) and ( 8, 0 ).
If we plug those values in : P = 2 x + 3 y
P ( 0,0 )= 0
P ( 0,8 ) = 2 * 0 + 3 * 8 = 24
P ( 6 , 5 ) = 2 * 6 + 3 * 5 = 12 + 15 = 27
P ( 8 , 0 ) = 2 * 8 + 3 * 0 = 16
The maximum value is:
P max ( 6 , 5 ) = 27
By definition of absolute value, you have

or more simply,

On their own, each piece is differentiable over their respective domains, except at the point where they split off.
For <em>x</em> > -1, we have
(<em>x</em> + 1)<em>'</em> = 1
while for <em>x</em> < -1,
(-<em>x</em> - 1)<em>'</em> = -1
More concisely,

Note the strict inequalities in the definition of <em>f '(x)</em>.
In order for <em>f(x)</em> to be differentiable at <em>x</em> = -1, the derivative <em>f '(x)</em> must be continuous at <em>x</em> = -1. But this is not the case, because the limits from either side of <em>x</em> = -1 for the derivative do not match:


All this to say that <em>f(x)</em> is differentiable everywhere on its domain, <em>except</em> at the point <em>x</em> = -1.
Answer:
what we solving for???? ill answer in the comments
Step-by-step explanation: