Hello,
x^3+7x^2+10x-6=x^3+3x^2+4x^2+12x-2x-6
=x²(x+3)+4x(x+3)-2(x+3)
=(x+3)(x²+4x-2)
=(x+3)(x+2-√7)(x+2+√7)
zeroes={-3,-2+√7,-2-√7}
Answer:
Step-by-step explanation:
When a question asks for the "end behavior" of a function, they just want to know what happens if you trace the direction the function heads in for super low and super high values of x. In other words, they want to know what the graph is looking like as x heads for both positive and negative infinity. This might be sort of hard to visualize, so if you have a graphing utility, use it to double check yourself, but even without a graph, we can answer this question. For any function involving x^3, we know that the "parent graph" looks like the attached image. This is the "basic" look of any x^3 function; however, certain things can change the end behavior. You'll notice that in the attached graph, as x gets really really small, the function goes to negative infinity. As x gets very very big, the function goes to positive infinity.
Now, taking a look at your function, 2x^3 - x, things might change a little. Some things that change the end behavior of a graph include a negative coefficient for x^3, such as -x^3 or -5x^3. This would flip the graph over the y-axis, which would make the end behavior "swap", basically. Your function doesn't have a negative coefficient in front of x^3, so we're okay on that front, and it turns out your function has the same end behavior as the parent function, since no kind of reflection is occurring. I attached the graph of your function as well so you can see it, but what this means is that as x approaches infinity, or as x gets very big, your function also goes to infinity, and as x approaches negative infinity, or as x gets very small, your function goes to negative infinity.
Answer:
A
Step-by-step explanation:
In order for a graph to be a function, it has to only cross the vertical (up and down) lines that it covers once. Since this is an angle, it crosses all the lines in two different places, and isn't a function.
Answer:
The set of solutions is ![\{\left[\begin{array}{c}x\\y\\z\end{array}\right]=\left[\begin{array}{c}12\\-7-r\\r\end{array}\right]: \text{r is a real number} \}](https://tex.z-dn.net/?f=%5C%7B%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx%5C%5Cy%5C%5Cz%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D12%5C%5C-7-r%5C%5Cr%5Cend%7Barray%7D%5Cright%5D%3A%20%5Ctext%7Br%20is%20a%20real%20number%7D%20%20%5C%7D)
Step-by-step explanation:
The augmented matrix of the system is
.
We will use rows operations for find the echelon form of the matrix.
- In row 2 we subtract
from row 1. (R2- 2/3R1) and we obtain the matrix ![\left[\begin{array}{cccc}3&6&6&-9\\0&1&1&-7\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D3%266%266%26-9%5C%5C0%261%261%26-7%5Cend%7Barray%7D%5Cright%5D)
- We multiply the row 1 by
.
Now we solve for the unknown variables:
The system has a free variable, the the system has infinite solutions and the set of solutions is ![\{\left[\begin{array}{c}x\\y\\z\end{array}\right]=\left[\begin{array}{c}12\\-7-r\\r\end{array}\right]: \text{r is a real number} \}](https://tex.z-dn.net/?f=%5C%7B%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx%5C%5Cy%5C%5Cz%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D12%5C%5C-7-r%5C%5Cr%5Cend%7Barray%7D%5Cright%5D%3A%20%5Ctext%7Br%20is%20a%20real%20number%7D%20%20%5C%7D)
Answer:
look down
Step-by-step explanation:
we need to find 10% and multiply it by 4 to get 40 percent
10 percent of 2200 is 220 because 2200 divided by 10 is 220 then we multiply this by 4 and we should get 880