y = 3(x - 2)² - (x - 5)²
y = 3(x - 2)(x - 2) - (x - 5)(x - 5)
y = 3(x(x - 2) - 2(x - 2)) - (x(x - 5) - 5(x - 5))
y = 3(x(x) - x(2) - 2(x) + 2(2)) - (x(x) - x(5) - 5(x) + 5(5))
y = 3(x² - 2x - 2x + 4) - (x² - 5x - 5x + 25)
y = 3(x² - 4x + 4) - (x² - 10x + 25)
y = 3(x²) - 3(4x) + 3(4) - (x²) + (10x) - (25)
y = (3x² - 12x + 12) + (-x² + 10x - 25)
y = (3x² - x²) + (-12x + 10x) + (12 - 25)
y = 2x² - 2x - 13
+ 13 + 13
y + 13 = 2x² - 2x + 0.5
y + 13 + 0.5 = 2(x² - x + 0.25)
y + 13.5 = 2(x² - 0.5x - 0.5x + 0.25)
y + 13.5 = 2(x(x) - x(0.5) - 0.5(x) + 0.5(0.5))
y + 13.5 = 2(x(x - 0.5) - 0.5(x - 0.5))
y + 13.5 = 2(x - 0.5)(x - 0.5)
y + 13.5 = 2(x - 0.5)²
- 13.5 - 13.5
y = 2(x - 0.5)² - 13.5
Answer:
19
Step-by-step explanation:
When you have a straight line with a transversal, the two angles are equal to 180 degrees
180=123+3x ---> subtract 123 to the other side
57=3x ---> divide by 3
x=57/3
x=19
Answer:
Domain of the function → (-6, ∞)
Range of the function → (-∞, ∞)
Step-by-step explanation:
Domain of a function is the set of x-values of the function.
Similarly, Range of the function is the set of y-values.
From the graph attached,
Domain of the function → (-6, ∞)
x-values of the function starts from x = -6 (excluding x = -5) and tends to the positive infinity.
Range of the function → (-∞, ∞)
y-values starts from negative infinity and tends to positive infinity.
SOH CAH TOA.
Sin = Opposite / Hypotenuse
Cos = Adjacent / Hypotenuse
Tan = Opposite / Adjacent