Question:
Part D) An object at 20∘C absorbs 25.0 J of heat. What is the change in entropy ΔS of the object? Express your answer numerically in joules per kelvin.
Part E) An object at 500 K dissipates 25.0 kJ of heat into the surroundings. What is the change in entropy ΔS of the object? Assume that the temperature of the object does not change appreciably in the process. Express your answer numerically in joules per kelvin.
Part F) An object at 400 K absorbs 25.0 kJ of heat from the surroundings. What is the change in entropy ΔS of the object? Assume that the temperature of the object does not change appreciably in the process. Express your answer numerically in joules per kelvin.
Part G) Two objects form a closed system. One object, which is at 400 K, absorbs 25.0 kJ of heat from the other object,which is at 500 K. What is the net change in entropy ΔSsys of the system? Assume that the temperatures of the objects do not change appreciably in the process. Express your answer numerically in joules per kelvin.
Answer:
D) 85 J/K
E) - 50 J/K
F) 62.5 J/K
G) 12.5 J/K
Explanation:
Let's make use of the entropy equation: ΔS =
Part D)
Given:
T = 20°C = 20 +273 = 293K
Q = 25.0 kJ
Entropy change will be:
ΔS =
= 85 J/K
Part E)
Given:
T = 500K
Q = -25.0 kJ
Entropy change will be:
ΔS =
= - 50 J/K
Part F)
Given:
T = 400K
Q = 25.0 kJ
Entropy change will be:
ΔS =
= 62.5 J/K
Part G:
Given:
T1 = 400K
T2 = 500K
Q = 25.0 kJ
The net entropy change will be:
ΔS =
= 12.5 J/K
It’s Neon (Ne). You know because there are 10 protons and the number of protons is equal to the atomic number of an element. (Neon is #10 on the periodic table)
Answer:
Miles (mi) or kilometers (km)
Explanation:
This is a big distance and it needs to be measured using a large unit of measurement, unlike feet, yards, or meters.
Where are the selections ????
Answer:
0.57 moles (NH4)3PO4 (2 sig. figs.)
Explanation:
To quote, J.R.
"Note: liquid ammonia (NH3) is actually aqueous ammonium hydroxide (NH4OH) because NH3 + H2O -> NH4OH.
H3PO4(aq) + 3NH4OH(aq) ==> (NH4)3PO4 + 3H2O
Assuming that H3PO4 is not limiting, i.e. it is present in excess
1.7 mol NH4OH x 1 mole (NH4)3PO4/3 moles NH4OH = 0.567 moles = 0.57 moles (NH4)3PO4 (2 sig. figs.)"