the formula is a_{1}+(n-1) d
so a_{1} would be the first number in the sequence, which would be 13 in problem 9.
13+(n-1)d
then you put in n, which is 10 (it represents which number in the sequence you're looking for, for example 16 is the second number in the sequence)
13+(10-1)d
then you find the difference between each number, represented by d which in this case is 3
13+(10-1)3
13+(9)3
13+27=
40
Answer:
<em>length</em><em> </em><em>l</em><em> </em><em>=</em><em>150</em><em> </em>
<em>breadth</em><em> </em><em>b</em><em> </em><em>=</em><em> </em><em>80</em><em> </em>
<em>lf</em><em> </em><em>2</em><em> </em><em>m</em><em> </em><em>wide</em><em> </em><em> </em><em>of</em><em> </em><em>road</em><em> </em><em>is</em><em> </em><em>inside</em><em> </em><em>the</em><em> </em><em>garden</em>
<em>then</em>
<em>lt's</em><em> </em><em>area</em><em> </em><em>=</em><em> </em><em>l</em><em> </em><em>×</em><em>b</em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>=</em><em> </em><em>150</em><em> </em><em>×</em><em> </em><em>2</em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>=</em><em> </em><em>300m</em><em>^</em><em>2</em>
Answer:
805
Step-by-step explanation:
x=y-120÷7
y÷7=y-720÷7
7y=y-4830
y=4830÷6
y=805
Answer:
0.15866.
Step-by-step explanation:
We have been given that on average, electricians earn approximately μ= $54,000 per year in the united states. Assume that the distribution for electricians' yearly earnings is normally distributed and that the standard deviation is σ= $12,000. We are asked to find the probability that the sample mean is greater than $66,000.
First of all, we will find the z-score corresponding to 66,000 using z-score formula.




Now, we need to find the probability that z-score is greater than 1 that is
.
Upon using formula
, we will get:

Upon using normal distribution table, we will get:


Therefore, the probability that the sample mean is greater than $66,000 would be 0.15866 or approximately
.
Answer:
A
Step-by-step explanation:
Given
12x + 7 < - 11 or 5x - 8 > 40
Solve each inequality
12x + 7 < - 11 ( subtract 7 from both sides )
12x < - 18 ( divide both sides by 12 )
x < - 
OR
5x - 8 > 40 ( add 8 to both sides )
5x > 48 ( divide both sides by 5 )
x > 
Solution is
x < -
or x >
→ A