1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
otez555 [7]
3 years ago
10

A school survey asked students which candidate they supported for class president. the survey data are shown in the relative fre

quency table.
Mathematics
1 answer:
GalinKa [24]3 years ago
3 0

Answer:

C. 24%

Step-by-step explanation:

hope it works

You might be interested in
Help please this math is hard
Alenkinab [10]
The answer is 10.35 because 63756 times 60 is 3825360 and 5280 times 70 is 369600 and if you divide those two answers it is 10.35
5 0
3 years ago
Find the area of the shape.
Anna71 [15]

Answer: 16\pi

Step-by-step explanation:

A_{\text{circle}} =\pi (8)^2 =64\pi\\\\A_{\text{shape}}=\frac{64\pi}{4}=16\pi

3 0
1 year ago
How do I solve for x
alexira [117]

Answer:

USE INVERSE OPERATION

Step-by-step explanation:

3 0
3 years ago
A particle moving in a planar force field has a position vector x that satisfies x'=Ax. The 2×2 matrix A has eigenvalues 4 and 2
andrey2020 [161]

Answer:

The required position of the particle at time t is: x(t)=\begin{bmatrix}-7.5e^{4t}+1.5e^{2t}\\2.5e^{4t}-1.5e^{2t}\end{bmatrix}

Step-by-step explanation:

Consider the provided matrix.

v_1=\begin{bmatrix}-3\\1 \end{bmatrix}

v_2=\begin{bmatrix}-1\\1 \end{bmatrix}

\lambda_1=4, \lambda_2=2

The general solution of the equation x'=Ax

x(t)=c_1v_1e^{\lambda_1t}+c_2v_2e^{\lambda_2t}

Substitute the respective values we get:

x(t)=c_1\begin{bmatrix}-3\\1 \end{bmatrix}e^{4t}+c_2\begin{bmatrix}-1\\1 \end{bmatrix}e^{2t}

x(t)=\begin{bmatrix}-3c_1e^{4t}-c_2e^{2t}\\c_1e^{4t}+c_2e^{2t} \end{bmatrix}

Substitute initial condition x(0)=\begin{bmatrix}-6\\1 \end{bmatrix}

\begin{bmatrix}-3c_1-c_2\\c_1+c_2 \end{bmatrix}=\begin{bmatrix}-6\\1 \end{bmatrix}

Reduce matrix to reduced row echelon form.

\begin{bmatrix} 1& 0 & \frac{5}{2}\\ 0& 1 & \frac{-3}{2}\end{bmatrix}

Therefore, c_1=2.5,c_2=1.5

Thus, the general solution of the equation x'=Ax

x(t)=2.5\begin{bmatrix}-3\\1\end{bmatrix}e^{4t}-1.5\begin{bmatrix}-1\\1 \end{bmatrix}e^{2t}

x(t)=\begin{bmatrix}-7.5e^{4t}+1.5e^{2t}\\2.5e^{4t}-1.5e^{2t}\end{bmatrix}

The required position of the particle at time t is: x(t)=\begin{bmatrix}-7.5e^{4t}+1.5e^{2t}\\2.5e^{4t}-1.5e^{2t}\end{bmatrix}

6 0
3 years ago
A=b=c=0.8 Area (trigonometry)
attashe74 [19]

Answer:

Step-by-step explanation:

5 0
3 years ago
Other questions:
  • 42.85714 as a percent
    13·2 answers
  • Find the area of the complex.
    12·2 answers
  • 7 7/8 - 1 1/2 +0+0+0+0+0+0+0+0=
    14·2 answers
  • What number can be used as a common denominator for the fractions 1/4 and 5/6
    15·2 answers
  • -5x2 - 9x + 8 from – 6x2 +5
    11·1 answer
  • Please help!!! Fist answer gets brainliest
    14·1 answer
  • What is the volume of this figure?
    8·1 answer
  • 2. A,B,C,D ? <br> 3. A,B,C,D ?
    14·1 answer
  • Factorise fully 3 x + 15
    12·1 answer
  • Plzzz help I don’t understandddddd
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!