Answer:
Hey I’m early and actually get points
Step-by-step explanation:
I've answered your other question as well.
Step-by-step explanation:
Since the identity is true whether the angle x is measured in degrees, radians, gradians (indeed, anything else you care to concoct), I’ll omit the ‘degrees’ sign.
Using the binomial theorem, (a+b)3=a3+3a2b+3ab2+b3
⇒a3+b3=(a+b)3−3a2b−3ab2=(a+b)3−3(a+b)ab
Substituting a=sin2(x) and b=cos2(x), we have:
sin6(x)+cos6(x)=(sin2(x)+cos2(x))3−3(sin2(x)+cos2(x))sin2(x)cos2(x)
Using the trigonometric identity cos2(x)+sin2(x)=1, your expression simplifies to:
sin6(x)+cos6(x)=1−3sin2(x)cos2(x)
From the double angle formula for the sine function, sin(2x)=2sin(x)cos(x)⇒sin(x)cos(x)=0.5sin(2x)
Meaning the expression can be rewritten as:
sin6(x)+cos6(x)=1−0.75sin2(2x)=1−34sin2(2x)
Answer:
The angle it turns through if it sweeps an area of 48 cm² is 448.8°
Step-by-step explanation:
If the length of a minute hand of a clock is 3.5cm, to find the angle it turns through if it sweeps an area of 48 cm, we will follow the steps below;
area of a sector = Ф/360 × πr²
where Ф is the angle, r is the radius π is a constant
from the question given, the length of the minute hand is 3.5 cm, this implies that radius r = 3.5
Ф =? area of the sector= 48 cm² π = 
we can now go ahead to substitute the values into the formula and solve Ф
area of a sector = Ф/360 × πr²
48 = Ф/360 ×
× (3.5)²
48 = Ф/360 ×
×12.25
48 = 269.5Ф / 2520
multiply both-side of the equation by 2520
48×2520 = 269.5Ф
120960 = 269.5Ф
divide both-side of the equation by 269.5
448.8≈Ф
Ф = 448.8°
The angle it turns through if it sweeps an area of 48 cm² is 448.8°
Total cost equals the yearly fee price plus $14 times number of hours.
T= total cost
n= number of hours
Equation:
T= $199 + $14n
Hope this helps! :)
8x^2*3xy
24x^3y I believe. Sorry if I’m a little rusty