Answer:
![f(x) = 2[\frac{3^x}{9}] + 2](https://tex.z-dn.net/?f=f%28x%29%20%3D%202%5B%5Cfrac%7B3%5Ex%7D%7B9%7D%5D%20%2B%202)
![f(x) = 8(4)^x](https://tex.z-dn.net/?f=f%28x%29%20%3D%208%284%29%5Ex)
Step-by-step explanation:
Given
![f(x) = 2(3)^{x-2} + 2](https://tex.z-dn.net/?f=f%28x%29%20%3D%202%283%29%5E%7Bx-2%7D%20%2B%202)
![f(x) = \frac{1}{2}(4)^{x+2}](https://tex.z-dn.net/?f=f%28x%29%20%3D%20%5Cfrac%7B1%7D%7B2%7D%284%29%5E%7Bx%2B2%7D)
Required
Remove the h component
In a function, the h component is highlighted as:
![f(x) = a^{x+h}](https://tex.z-dn.net/?f=f%28x%29%20%3D%20a%5E%7Bx%2Bh%7D)
So, we have:
![f(x) = 2(3)^{x-2} + 2](https://tex.z-dn.net/?f=f%28x%29%20%3D%202%283%29%5E%7Bx-2%7D%20%2B%202)
Split the exponents using the following law of indices:
![a^m/a^n = a^{m-n}](https://tex.z-dn.net/?f=a%5Em%2Fa%5En%20%3D%20a%5E%7Bm-n%7D)
![f(x) = 2*\frac{3^x}{3^2} + 2](https://tex.z-dn.net/?f=f%28x%29%20%3D%202%2A%5Cfrac%7B3%5Ex%7D%7B3%5E2%7D%20%2B%202)
![f(x) = 2*\frac{3^x}{9} + 2](https://tex.z-dn.net/?f=f%28x%29%20%3D%202%2A%5Cfrac%7B3%5Ex%7D%7B9%7D%20%2B%202)
![f(x) = 2[\frac{3^x}{9}] + 2](https://tex.z-dn.net/?f=f%28x%29%20%3D%202%5B%5Cfrac%7B3%5Ex%7D%7B9%7D%5D%20%2B%202)
<em>The h component has been removed</em>
![f(x) = \frac{1}{2}(4)^{x+2}](https://tex.z-dn.net/?f=f%28x%29%20%3D%20%5Cfrac%7B1%7D%7B2%7D%284%29%5E%7Bx%2B2%7D)
Split the exponent using the following law of indices
![a^{m+n} =a^m * a^n](https://tex.z-dn.net/?f=a%5E%7Bm%2Bn%7D%20%3Da%5Em%20%2A%20a%5En)
So, we have:
![f(x) = \frac{1}{2}(4)^x * 4^2](https://tex.z-dn.net/?f=f%28x%29%20%3D%20%5Cfrac%7B1%7D%7B2%7D%284%29%5Ex%20%2A%204%5E2)
Express 4^2 as 16
![f(x) = \frac{1}{2}(4)^x * 16](https://tex.z-dn.net/?f=f%28x%29%20%3D%20%5Cfrac%7B1%7D%7B2%7D%284%29%5Ex%20%2A%2016)
Divide 16 by 2
![f(x) = 8(4)^x](https://tex.z-dn.net/?f=f%28x%29%20%3D%208%284%29%5Ex)
Answer:
1000000
Step-by-step explanation:
10x10x10x10x10x10=1000000
Slope 4x and y-intercept is -10 I think I’m positive
Answer:
The correct answer is option (E)
Step-by-step explanation:
Solution to the question
Let us recall from given question that,
H0:p=0.80
Ha:p≠0.80 (which is the two tailed test)
For the p-value we have,
P-value: Let us assume that the null hypothesis is true, then the probability of observing the sample statistics or the more extreme,
Therefore if p= 0.80, the probability of observing or detecting proportion of samples is of at least 0.84 or at most 0.76 is 0.273.