1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Rzqust [24]
3 years ago
14

Find the area of the composite figure (round to the nearest tenth). The area of the composite figure is

Mathematics
2 answers:
bekas [8.4K]3 years ago
7 0
50.8 m hope this helps !!!!
MatroZZZ [7]3 years ago
6 0
The area of the composite figure is 50.8m
You might be interested in
Solve for x 5x + 4/2 = 7
aev [14]

Answer:

x=2

Step-by-step explanation:

5x+\frac{4}{2} = 7

5x+4 =7 (2)

5x+4=14

5x=14-4

5x=10

\frac{5x}{5} = \frac{10}{5}

x=2

8 0
3 years ago
Read 2 more answers
What type of table has the largest area
Helen [10]

Answer:

The Rectangular Table Has The largest area of 1460 in^2

7 0
3 years ago
What is the derivative of x times squaareo rot of x+ 6?
Dafna1 [17]
Hey there, hope I can help!

\mathrm{Apply\:the\:Product\:Rule}: \left(f\cdot g\right)^'=f^'\cdot g+f\cdot g^'
f=x,\:g=\sqrt{x+6} \ \textgreater \  \frac{d}{dx}\left(x\right)\sqrt{x+6}+\frac{d}{dx}\left(\sqrt{x+6}\right)x \ \textgreater \  \frac{d}{dx}\left(x\right) \ \textgreater \  1

\frac{d}{dx}\left(\sqrt{x+6}\right) \ \textgreater \  \mathrm{Apply\:the\:chain\:rule}: \frac{df\left(u\right)}{dx}=\frac{df}{du}\cdot \frac{du}{dx} \ \textgreater \  =\sqrt{u},\:\:u=x+6
\frac{d}{du}\left(\sqrt{u}\right)\frac{d}{dx}\left(x+6\right)

\frac{d}{du}\left(\sqrt{u}\right) \ \textgreater \  \mathrm{Apply\:radical\:rule}: \sqrt{a}=a^{\frac{1}{2}} \ \textgreater \  \frac{d}{du}\left(u^{\frac{1}{2}}\right)
\mathrm{Apply\:the\:Power\:Rule}: \frac{d}{dx}\left(x^a\right)=a\cdot x^{a-1} \ \textgreater \  \frac{1}{2}u^{\frac{1}{2}-1} \ \textgreater \  Simplify \ \textgreater \  \frac{1}{2\sqrt{u}}

\frac{d}{dx}\left(x+6\right) \ \textgreater \  \mathrm{Apply\:the\:Sum/Difference\:Rule}: \left(f\pm g\right)^'=f^'\pm g^'
\frac{d}{dx}\left(x\right)+\frac{d}{dx}\left(6\right)

\frac{d}{dx}\left(x\right) \ \textgreater \  1
\frac{d}{dx}\left(6\right) \ \textgreater \  0

\frac{1}{2\sqrt{u}}\cdot \:1 \ \textgreater \  \mathrm{Substitute\:back}\:u=x+6 \ \textgreater \  \frac{1}{2\sqrt{x+6}}\cdot \:1 \ \textgreater \  Simplify \ \textgreater \  \frac{1}{2\sqrt{x+6}}

1\cdot \sqrt{x+6}+\frac{1}{2\sqrt{x+6}}x \ \textgreater \  Simplify

1\cdot \sqrt{x+6} \ \textgreater \  \sqrt{x+6}
\frac{1}{2\sqrt{x+6}}x \ \textgreater \  \frac{x}{2\sqrt{x+6}}
\sqrt{x+6}+\frac{x}{2\sqrt{x+6}}

\mathrm{Convert\:element\:to\:fraction}: \sqrt{x+6}=\frac{\sqrt{x+6}}{1} \ \textgreater \  \frac{x}{2\sqrt{x+6}}+\frac{\sqrt{x+6}}{1}

Find the LCD
2\sqrt{x+6} \ \textgreater \  \mathrm{Adjust\:Fractions\:based\:on\:the\:LCD} \ \textgreater \  \frac{x}{2\sqrt{x+6}}+\frac{\sqrt{x+6}\cdot \:2\sqrt{x+6}}{2\sqrt{x+6}}

Since\:the\:denominators\:are\:equal,\:combine\:the\:fractions
\frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c} \ \textgreater \  \frac{x+2\sqrt{x+6}\sqrt{x+6}}{2\sqrt{x+6}}

x+2\sqrt{x+6}\sqrt{x+6} \ \textgreater \  \mathrm{Apply\:exponent\:rule}: \:a^b\cdot \:a^c=a^{b+c}
\sqrt{x+6}\sqrt{x+6}=\:\left(x+6\right)^{\frac{1}{2}+\frac{1}{2}}=\:\left(x+6\right)^1=\:x+6 \ \textgreater \  x+2\left(x+6\right)
\frac{x+2\left(x+6\right)}{2\sqrt{x+6}}

x+2\left(x+6\right) \ \textgreater \  2\left(x+6\right) \ \textgreater \  2\cdot \:x+2\cdot \:6 \ \textgreater \  2x+12 \ \textgreater \  x+2x+12
3x+12

Therefore the derivative of the given equation is
\frac{3x+12}{2\sqrt{x+6}}

Hope this helps!
8 0
3 years ago
You make skateboard ramps by cutting pieces from a board that is 12 1/2 feet long.
Stels [109]
The length of the ramp is unknown. 
If 6 ramps were cut from a board that is 12 1/2 feet long, the ramps would be about 2 feet long each which seems like a reasonable answer. The questions regarding how many boards are cut would need the length of the ramps. Lets say that the length is x. You can get 12 1/2 divided by x boards. In order to find out how much is left over, take the number of boards made, multiply it by how long they are. This product is then subracted from 12 1/2. 
5 0
3 years ago
Find the length of the third side. If necessary, round to the nearest tenth
Rina8888 [55]

Answer:

x=14.28

Step-by-step explanation:

24^2+x^2=28^2, Pythagorean theorem

x^2=28^2-24^2

x^2=(28+24)(28-24)

x^2=52*4

x^2=204

x is around 14.28

3 0
2 years ago
Other questions:
  • I am sketching parabolas and my book is telling me that I need only two points. But I don't know how I am meant to sketch the pa
    12·1 answer
  • I NEED ASAP PLS ONLY RIGHT ANSWERS!!! (24 pts!)
    15·2 answers
  • Pls help me understand.
    9·1 answer
  • Please help!! I don’t get it
    7·1 answer
  • How long does it take a runner to run 12km if he is running at a speed of 7km/h
    5·2 answers
  • Find the slope of the line through the given pair of points, if possible. Based on the slope, indicate whether the line through
    7·1 answer
  • - 2/3 - -1 3/9 how do I find the answer (I need to show work)
    14·2 answers
  • Look at the function below. f(x)=−x2−2x+8
    5·1 answer
  • Simplify.
    12·2 answers
  • you notice a hot air balloon descending. The elevation h (in feet) of the balloon is modeled by the function h(x)=-12x+300, wher
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!