The horizontal force applied is 160 N while the velocity is 2.03 m/s.
<h3>What is the speed of the car?</h3>
The work done by the car is obtained as the product of the force and the distance;
W = F x
F = ?
x = 30.0 m
W = 4,800 J
F = 4,800 J/30.0 m
F = 160 N
But F = ma
a = F/m
a = 160 N/2.30 ✕ 10^3-kg
a= 0.069 m/s
Now;
v^2 = u^2 + 2as
u = 0/ms because the car started from rest
v = √2as
v = √2 * 0.069 * 30
v = 2.03 m/s
Learn more about force and work:brainly.com/question/758238
#SPJ1
<span>By algebra, d = [(v_f^2) - (v_i^2)]/2a.
Thus, d = [(0^2)-(15^2)]/(2*-7)
d = [0-(225)]/(-14)
d = 225/14
d = 16.0714 m
With 2 significant figures in the problem, the car travels 16 meters during deceleration.</span>
The answer is c hope it helps
Answer:
this pdf should help you out
Explanation:
Answer:
Stress = 4.67 * 10^-7 N/m²
Explanation:
Young's modulus of the material = Stress/Strain
Given
Young's modulus = 228 x 10^9 Pa
Stress = 106,483 Pa
Required
Strain
From the formula;
Strain = Stress/Young modulus
Strain = 106,483 /228 x 10^9
Stress = 4.67 * 10^-7 N/m²