The period of the tan function is π so (∅ + π) would yield the same value as ∅
F(∅ + π) = 3
Answer:
(a) ![\alpha=-111.26rad/s](https://tex.z-dn.net/?f=%5Calpha%3D-111.26rad%2Fs)
(b) ![s=4450.6in](https://tex.z-dn.net/?f=s%3D4450.6in)
(c) ![8.66in](https://tex.z-dn.net/?f=8.66in)
Explanation:
First change the units of the velocity, using these equivalents
and ![1 min =60s](https://tex.z-dn.net/?f=1%20min%20%3D60s)
![4250rpm(\frac{2\pi rad}{1rev})(\frac{1 min}{60 s} )=445.06rad/s](https://tex.z-dn.net/?f=4250rpm%28%5Cfrac%7B2%5Cpi%20rad%7D%7B1rev%7D%29%28%5Cfrac%7B1%20min%7D%7B60%20s%7D%20%29%3D445.06rad%2Fs)
The angular acceleration
the time rate of change of the angular speed
according to:
![\alpha=\frac{\Delta \omega}{\Delta t}](https://tex.z-dn.net/?f=%5Calpha%3D%5Cfrac%7B%5CDelta%20%5Comega%7D%7B%5CDelta%20t%7D)
![\Delta \omega=\omega_i-\omega_f](https://tex.z-dn.net/?f=%5CDelta%20%20%5Comega%3D%5Comega_i-%5Comega_f)
Where
is the original velocity, in the case the velocity before starting the deceleration, and
is the final velocity, equal to zero because it has stopped.
![\alpha=\frac{\Delta \omega}{\Delta t} =\frac{\omega_i-\omega_f}{4}\frac{0-445.06}{4} =\frac{-445.06}{4} =-111.26rad/s](https://tex.z-dn.net/?f=%5Calpha%3D%5Cfrac%7B%5CDelta%20%5Comega%7D%7B%5CDelta%20t%7D%20%3D%5Cfrac%7B%5Comega_i-%5Comega_f%7D%7B4%7D%5Cfrac%7B0-445.06%7D%7B4%7D%20%3D%5Cfrac%7B-445.06%7D%7B4%7D%20%3D-111.26rad%2Fs)
b) To find the distance traveled in radians use the formula:
![\theta = \omega_i t + \frac{1}{2} \alpha t^2](https://tex.z-dn.net/?f=%5Ctheta%20%3D%20%5Comega_i%20t%20%2B%20%5Cfrac%7B1%7D%7B2%7D%20%5Calpha%20t%5E2)
![\theta = 445.06 (4) + \frac{1}{2}(-111.26) (4)^2=1780.24-890.12=890.12rad](https://tex.z-dn.net/?f=%5Ctheta%20%3D%20445.06%20%284%29%20%2B%20%5Cfrac%7B1%7D%7B2%7D%28-111.26%29%20%284%29%5E2%3D1780.24-890.12%3D890.12rad)
To change this result to inches, solve the angular displacement
for the distance traveled
(
is the radius).
![\theta=\frac{s}{r} \\s=\theta r](https://tex.z-dn.net/?f=%5Ctheta%3D%5Cfrac%7Bs%7D%7Br%7D%20%5C%5Cs%3D%5Ctheta%20r)
![s=890.12(5)=4450.6in](https://tex.z-dn.net/?f=s%3D890.12%285%29%3D4450.6in)
c) The displacement is the difference between the original position and the final. But in every complete rotation of the rim, the point returns to its original position. so is needed to know how many rotations did the point in the 890.16 rad of distant traveled:
![\frac{890.12}{2\pi}=141.6667](https://tex.z-dn.net/?f=%5Cfrac%7B890.12%7D%7B2%5Cpi%7D%3D141.6667)
The real difference is in the 0.6667 (or 2/3) of the rotation. To find the distance between these positions imagine a triangle formed with the center of the blade (point C), the initial position (point A) and the final position (point B). The angle
is between the two sides known. Using the theorem of the cosine we can find the missing side of the the triangle(which is also the net displacement):
![c^2=a^2+b^2-2abcos(\gamma)](https://tex.z-dn.net/?f=c%5E2%3Da%5E2%2Bb%5E2-2abcos%28%5Cgamma%29)
![c^2=5^2+5^2-2(5)(5)cos(\frac{2\pi}{3} )\\c^2=25+25+25\\c^2=75\\c=5\sqrt{3}=8.66in](https://tex.z-dn.net/?f=c%5E2%3D5%5E2%2B5%5E2-2%285%29%285%29cos%28%5Cfrac%7B2%5Cpi%7D%7B3%7D%20%29%5C%5Cc%5E2%3D25%2B25%2B25%5C%5Cc%5E2%3D75%5C%5Cc%3D5%5Csqrt%7B3%7D%3D8.66in)
Answer:
Not possible
Explanation:
= longitudinal modulus of elasticity = 35 Gpa
= transverse modulus of elasticity = 5.17 Gpa
= Epoxy modulus of elasticity = 3.4 Gpa
= Volume fraction of fibre (longitudinal)
= Volume fraction of fibre (transvers)
= Modulus of elasticity of aramid fibers = 131 Gpa
Longitudinal modulus of elasticity is given by
![E_{cl}=E_m(1-V_{\rho l})+E_fV_{\rho l}\\\Rightarrow 35=3.4(1-V_{\rho l})+131V_{\rho l}\\\Rightarrow 35=3.4-3.4V_{\rho l}+131V_{\rho l}\\\Rightarrow V_{\rho l}=\frac{35-3.4}{131-3.4}\\\Rightarrow V_{\rho l}=0.24764](https://tex.z-dn.net/?f=E_%7Bcl%7D%3DE_m%281-V_%7B%5Crho%20l%7D%29%2BE_fV_%7B%5Crho%20l%7D%5C%5C%5CRightarrow%2035%3D3.4%281-V_%7B%5Crho%20l%7D%29%2B131V_%7B%5Crho%20l%7D%5C%5C%5CRightarrow%2035%3D3.4-3.4V_%7B%5Crho%20l%7D%2B131V_%7B%5Crho%20l%7D%5C%5C%5CRightarrow%20V_%7B%5Crho%20l%7D%3D%5Cfrac%7B35-3.4%7D%7B131-3.4%7D%5C%5C%5CRightarrow%20V_%7B%5Crho%20l%7D%3D0.24764)
Transverse modulus of elasticity is given by
![E_{ct}=\frac{E_mE_f}{(1-V_{\rho t})E_f+V_{\rho t}E_m}\\\Rightarrow 5.17=\frac{3.4\times 131}{(1-V_{\rho t})131+V_{\rho t}3.4}\\\Rightarrow \frac{3.4\times 131}{5.17}-131=-127.6V_{\rho t}\\\Rightarrow V_{\rho t}=\frac{\frac{3.4\times 131}{5.17}-131}{-127.6}\\\Rightarrow V_{\rho t}=0.35148](https://tex.z-dn.net/?f=E_%7Bct%7D%3D%5Cfrac%7BE_mE_f%7D%7B%281-V_%7B%5Crho%20t%7D%29E_f%2BV_%7B%5Crho%20t%7DE_m%7D%5C%5C%5CRightarrow%205.17%3D%5Cfrac%7B3.4%5Ctimes%20131%7D%7B%281-V_%7B%5Crho%20t%7D%29131%2BV_%7B%5Crho%20t%7D3.4%7D%5C%5C%5CRightarrow%20%5Cfrac%7B3.4%5Ctimes%20131%7D%7B5.17%7D-131%3D-127.6V_%7B%5Crho%20t%7D%5C%5C%5CRightarrow%20V_%7B%5Crho%20t%7D%3D%5Cfrac%7B%5Cfrac%7B3.4%5Ctimes%20131%7D%7B5.17%7D-131%7D%7B-127.6%7D%5C%5C%5CRightarrow%20V_%7B%5Crho%20t%7D%3D0.35148)
![V_{\rho l}\neq V_{\rho t}](https://tex.z-dn.net/?f=V_%7B%5Crho%20l%7D%5Cneq%20V_%7B%5Crho%20t%7D)
Hence, it is not possible to produce a continuous and oriented aramid fiber.
Answer:
x = 0.974 L
Explanation:
given,
length of inclination of log = 30°
mass of log = 200 Kg
rock is located at = 0.6 L
L is the length of the log
mass of engineer = 53.5 Kg
let x be the distance from left at which log is horizontal.
For log to be horizontal system should be in equilibrium
∑ M = 0
mass of the log will be concentrated at the center
distance of rock from CM of log = 0.1 L
now,
∑ M = 0
![m_{log} g \times 0.1 L = m_{engineer} g \times (x - 0.6 L)](https://tex.z-dn.net/?f=m_%7Blog%7D%20g%20%5Ctimes%200.1%20L%20%3D%20m_%7Bengineer%7D%20g%20%5Ctimes%20%28x%20-%200.6%20L%29)
![200 \times 0.1 L = 53.5 \times (x - 0.6 L)](https://tex.z-dn.net/?f=200%20%5Ctimes%200.1%20L%20%3D%2053.5%20%5Ctimes%20%28x%20-%200.6%20L%29)
![0.374 L =x - 0.6 L](https://tex.z-dn.net/?f=0.374%20L%20%3Dx%20-%200.6%20L)
x = 0.974 L
hence, distance of the engineer from the left side is equal to x = 0.974 L