Answer:
The correct answer is - the sound waves make vibration that travels through the string.
Explanation:
When an individual person talks into your paper cup telephone the person on the other end can feel the bottom of their cup vibrate. The sound waves create vibration go through the string that travels through the string to the end of the cup where vibrations can feel.
The sound waves are longitudinal waves that move or travel through different mediums like air, solid, or gas. The waves create vibration in the particles.
You could create a paper cup telephone but instead of using string, test out different materials and see if those materials will allow sound vibrations to travel through them
The general formula is: Momentum = (mass) x (speed)
I never like to just write a bunch of algebra without explaining it.
But in this particular case, there's really not much to say, and
I think the algebra will pretty well explain itself. I hope so:
Original momentum = (original mass) x (original speed)
New momentum = (2 x original mass) x (2 x original speed)
= (2) x (original mass) x (2) x (original speed)
= (2) x (2) x (original mass) x (original speed)
= (4) x (original mass) x (original speed)
= (4) x (original momentum).
Answer: The answer is D
Explanation: i had the same question and i just guessed and got it first try
Answer:
Terminal speed, v = 6901.07 m/s
Explanation:
It is given that,
Mass of the horizontal bar, m = 30 g = 0.03 kg
Length of the bar, l = 13 cm = 0.13 m
Magnetic field, 
Resistance, R = 1.2 ohms
We need to find the terminal speed oat which the bar falls. When terminal speed is reached,
Force of gravity = magnetic force
..................(1)
i is the current flowing
l is the length of the rod
Due to the motion in rods, an emf is induced in the coil which is given by :
, v is the speed of the bar


Equation (1) becomes,



v = 6901.07 m/s
So, the terminal speed at which the bar falls is 6901.07 m/s. Hence, this is the required solution.