Vi=0m/s
Vf=?
A=9.81
D=44
T=not needed
Vf^2=Vi^2+2ad
Vf=2ad square rooted
Vf=2(9.81)(44) square root it
Vf=29.3m/s
Answer:
Explanation:
Water waves are generally a transverse wave which do not cause permanent displacement of molecules of the medium. Transverse waves are waves in which the direction of propagation of the wave is perpendicular to the direction of vibration of the particles of the medium.
As the wave propagates from one point to another on the surface of water transferring energy, a molecule of water on its surface vibrates upwards and downwards. Its motion is perpendicular to the direction of propagation of the wave. After the vibration, it comes back to its initial position.
Answer:
The mutual speed immediately after the touchdown-saving tackle is 4.80 m/s
Explanation:
Given that,
Mass of halfback = 98 kg
Speed of halfback= 4.2 m/s
Mass of corner back = 85 kg
Speed of corner back = 5.5 m/s
We need to calculate their mutual speed immediately after the touchdown-saving tackle
Using conservation of momentum

Where,
= mass of halfback
=mass of corner back
= velocity of halfback
= velocity of corner back
Put the value into the formula



Hence, The mutual speed immediately after the touchdown-saving tackle is 4.80 m/s
A plane mirror always forms a virtual image. the image and the object are the same distance from a flat mirror, the image size is the same as the object, and the image is upright!
Answer:
yes
Explanation:
using law of HC(heat capacity), which is
- heat loss=heat gain
- energy H=MCQ
Where M is mass of substance,C is specific heat capacity, and Q is temperature change
In case of two substance
- the H = Mc*Cc*Q+Mw*Cw*Q(provided the initial and final temperature are given)