Answer:
3 grams
Step-by-step explanation:
We are going to take the mass of a bunch of little strips below the triangle "roof." To do this, we must figure out what formula for the mass we'll use, in this case, we'll use:
Mass of strip = denisty * area = (1+x)*y*deltax grams
now, because the "roof" of the triangle contains two different integrals (it completely changes direction), we will use TWO integrals!
**pretend ∈ is the sum symbol
Mass of left part = lim x->0 ∈ (1+x)*y*deltax = inegral -1 to 0 of (1+x)*3*(x+1) = 3 * integral -1 to 0 of (x^2 + 2x + 1) = 3 * 1/3 = 1
Mass of left part = lim x->0 ∈ (1+x)*y*deltax = inegral 0 to 1 of (1+x)*3*(-x+1) = 3 * integral 0 to 1 of (-x^2 + 1) = 3 * 2/3 = 2
Total mass = mass left + mass right = 1 + 2 = 3 grams
Yes it can, but jost once
Answer:
The answer is 21
Hope it helps
Please mark me as the brainliest
Thank you
Answer:
that would be 10 miles
Step-by-step explanation:
1 = 2.5 MILES
4:x
2.5 x 4 = 10
if i am wrong please explain cause it might me being dumb or something else
Answer:
use logarithms
Step-by-step explanation:
Taking the logarithm of an expression with a variable in the exponent makes the exponent become a coefficient of the logarithm of the base.
__
You will note that this approach works well enough for ...
a^(x+3) = b^(x-6) . . . . . . . . . . . variables in the exponents
(x+3)log(a) = (x-6)log(b) . . . . . a linear equation after taking logs
but doesn't do anything to help you solve ...
x +3 = b^(x -6)
There is no algebraic way to solve equations that are a mix of polynomial and exponential functions.
__
Some functions have been defined to help in certain situations. For example, the "product log" function (or its inverse) can be used to solve a certain class of equations with variables in the exponent. However, these functions and their use are not normally studied in algebra courses.
In any event, I find a graphing calculator to be an extremely useful tool for solving exponential equations.