1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
VashaNatasha [74]
3 years ago
15

What is 3 over 28 in simplest form????????????????????????????????????????????????

Mathematics
1 answer:
mylen [45]3 years ago
6 0
When you're trying to find something in the simplest form, you have to find a common denominator. The best way to do this is to find the factors. Factors of 3= 1, 3 Factors of 28= 1,2,4,7,14,28 In this case, the lowest factor is one, which is what they are currently in. Therefore, 3/28 is currently in its simplest form
You might be interested in
URGENT <br>Perform the indicated operation and simplify the result.
yan [13]

Answer:

The answer to your question is:  (2a - 1) / 4

Step-by-step explanation:

         \frac{12a^{2} - 3}{2} (2a + 1)^{-2}  ( \frac{6}{(2a +1)^{-1} } \\

        \frac{3(4a^{2} -1)}{2} \frac{1}{(2z + 1)^{2} } (\frac{2a + 1)}{6}

        \frac{3(2a + 1)(2a- 1) (2a + 1)}{12(2a + 1)(2a + 1)}

        \frac{(2a - 1)}{4}

8 0
3 years ago
I DONT KNOW THESE! HELP!
kkurt [141]

Answer:

20. x = 5, y = -2

21. x = 11, y = 12

22. x = 22, y = 11

23. x = 11, y = 10

Step-by-step explanation:

20. Opposite sides in the parallelogram are congruent, so

2y+18=3x-1\\ \\6x-3=17-5y

Solve this system of two equations:

\left\{\begin{array}{l}2y-3x=-19\\ \\6x+5y=20\end{array}\right.

Multiply the first equation by 2 and add two equations:

2(2y-3x)+6x+5y=2\cdot (-19)+20\\ \\4y-6x+6x+5y=-38+20\\ \\9y=-18\\ \\y=-2

Substitute it into the first equation:

2\cdot (-2)-3x=-19\\ \\-3x=-19+4\\ \\-3x=-15\\ \\x=5

21. Opposite angles in the parallelogram are congruent, so

11x+5=10y+6

Consecutive angles are supplementary, so

6x-y+11x+5=180^{\circ}

Solve this system of two equations:

\left\{\begin{array}{l}11x-10y=1\\ \\17x-y=175\end{array}\right.

From the second equation

y=17x-175

Substitute it into the first equation:

11x-10(17x-175)=1\\ \\11x-170x+1750=1\\ \\-159x=-1749\\ \\x=11\\ \\y=17\cdot 11-175=187-175=12

22. Opposite angles in the parallelogram are congruent, so

2x-5=3y-12

Consecutive angles are supplementary, so

2x-5+7y+x=180^{\circ}

Solve this system of two equations:

\left\{\begin{array}{l}2x-3y=-7\\ \\3x+7y=185\end{array}\right.

From the first equation

x=-3.5+1.5y

Substitute it into the second equation:

3(-3.5+1.5y)+7y=185\\ \\-10.5+4.5y+7y=185\\ \\-105+45y+70y=1,850\\ \\115y=1,850+105\\ \\115y=1,955\\ \\y=17\\ \\x=-3.5+1.5\cdot 17=22

23. Opposite sides in the parallelogram are congruent, so

2x+9=4y-9\\ \\3x-5=2y+8

Solve this system of two equations:

\left\{\begin{array}{l}2x-4y=-18\\ \\3x-2y=13\end{array}\right.

Multiply the second equation by 2 and subtract it from the first equation:

2x-4y-2(3x-2y)=-18-2\cdot 13\\ \\2x-4y-6x+4y=-18-26\\ \\-4x=-44\\ \\x=11

Substitute it into the first equation:

2\cdot 11-4y=-18\\ \\-4y=-18-22\\ \\-4y=-40\\ \\y=10

3 0
3 years ago
Mathhrjirjrrggghuughihihughhhg
marusya05 [52]

Answer:

jhliyuglkiygedrloqayfgwelJUQHAUGWDkutygsk,Hgkuyt

Step-by-step explanation:

3 0
3 years ago
Match each vector operation with its resultant vector expressed as a linear combination of the unit vectors i and j.
Cloud [144]

Answer:

3u - 2v + w = 69i + 19j.

8u - 6v = 184i + 60j.

7v - 4w = -128i + 62j.

u - 5w = -9i + 37j.

Step-by-step explanation:

Note that there are multiple ways to denote a vector. For example, vector u can be written either in bold typeface "u" or with an arrow above it \vec{u}. This explanation uses both representations.

\displaystyle \vec{u} = \langle 11, 12\rangle =\left(\begin{array}{c}11 \\12\end{array}\right).

\displaystyle \vec{v} = \langle -16, 6\rangle= \left(\begin{array}{c}-16 \\6\end{array}\right).

\displaystyle \vec{w} = \langle 4, -5\rangle=\left(\begin{array}{c}4 \\-5\end{array}\right).

There are two components in each of the three vectors. For example, in vector u, the first component is 11 and the second is 12. When multiplying a vector with a constant, multiply each component by the constant. For example,

3\;\vec{v} = 3\;\left(\begin{array}{c}11 \\12\end{array}\right) = \left(\begin{array}{c}3\times 11 \\3 \times 12\end{array}\right) = \left(\begin{array}{c}33 \\36\end{array}\right).

So is the case when the constant is negative:

-2\;\vec{v} = (-2)\; \left(\begin{array}{c}-16 \\6\end{array}\right) =\left(\begin{array}{c}(-2) \times (-16) \\(-2)\times(-6)\end{array}\right) = \left(\begin{array}{c}32 \\12\end{array}\right).

When adding two vectors, add the corresponding components (this phrase comes from Wolfram Mathworld) of each vector. In other words, add the number on the same row to each other. For example, when adding 3u to (-2)v,

3\;\vec{u} + (-2)\;\vec{v} = \left(\begin{array}{c}33 \\36\end{array}\right) + \left(\begin{array}{c}32 \\12\end{array}\right) = \left(\begin{array}{c}33 + 32 \\36+12\end{array}\right) = \left(\begin{array}{c}65\\48\end{array}\right).

Apply the two rules for the four vector operations.

<h3>1.</h3>

\displaystyle \begin{aligned}3\;\vec{u} - 2\;\vec{v} + \vec{w} &= 3\;\left(\begin{array}{c}11 \\12\end{array}\right) + (-2)\;\left(\begin{array}{c}-16 \\6\end{array}\right) + \left(\begin{array}{c}4 \\-5\end{array}\right)\\&= \left(\begin{array}{c}3\times 11 + (-2)\times (-16) + 4\\ 3\times 12 + (-2)\times 6 + (-5) \end{array}\right)\\&=\left(\begin{array}{c}69\\19\end{array}\right) = \langle 69, 19\rangle\end{aligned}

Rewrite this vector as a linear combination of two unit vectors. The first component 69 will be the coefficient in front of the first unit vector, i. The second component 19 will be the coefficient in front of the second unit vector, j.

\displaystyle \left(\begin{array}{c}69\\19\end{array}\right) = \langle 69, 19\rangle = 69\;\vec{i} + 19\;\vec{j}.

<h3>2.</h3>

\displaystyle \begin{aligned}8\;\vec{u} - 6\;\vec{v} &= 8\;\left(\begin{array}{c}11\\12\end{array}\right) + (-6) \;\left(\begin{array}{c}-16\\6\end{array}\right)\\&=\left(\begin{array}{c}88+96\\96 - 36\end{array}\right)\\&= \left(\begin{array}{c}184\\60\end{array}\right)= \langle 184, 60\rangle\\&=184\;\vec{i} + 60\;\vec{j} \end{aligned}.

<h3>3.</h3>

\displaystyle \begin{aligned}7\;\vec{v} - 4\;\vec{w} &= 7\;\left(\begin{array}{c}-16\\6\end{array}\right) + (-4) \;\left(\begin{array}{c}4\\-5\end{array}\right)\\&=\left(\begin{array}{c}-112 - 16\\42+20\end{array}\right)\\&= \left(\begin{array}{c}-128\\62\end{array}\right)= \langle -128, 62\rangle\\&=-128\;\vec{i} + 62\;\vec{j} \end{aligned}.

<h3>4.</h3>

\displaystyle \begin{aligned}\;\vec{u} - 5\;\vec{w} &= \left(\begin{array}{c}11\\12\end{array}\right) + (-5) \;\left(\begin{array}{c}4\\-5\end{array}\right)\\&=\left(\begin{array}{c}11-20\\12+25\end{array}\right)\\&= \left(\begin{array}{c}-9\\37\end{array}\right)= \langle -9, 37\rangle\\&=-9\;\vec{i} + 37\;\vec{j} \end{aligned}.

7 0
3 years ago
A company owes a bank $3600. Beginning with month 1, the company repays the bank $300 each month.
allochka39001 [22]

Answer:

3,900

Step-by-step explanation:

5 0
3 years ago
Other questions:
  • 8 is 110% of what number?
    13·1 answer
  • Solve the equation x-4-3x=-2x-3-1
    7·1 answer
  • 1) Write an expression to represent the pattern. 19, 27, 35, 43...
    11·1 answer
  • What is a troll?<br><br> Quick I’m being timed
    11·2 answers
  • What the slope of a line is and how this notion is used to solve practical problems.
    6·1 answer
  • If a triangle has side lengths of 12,24 and 8 what is the hypotenuse side?
    6·1 answer
  • Divide. Write the quotient in lowest terms.<br> 1<br> Col<br> What is 1/4 divided by 1 1/8
    13·1 answer
  • ANSWER AS QUICK AS POSSIBLE WILL GET BRAINIEST!!!!!
    8·2 answers
  • Solve for x: −4x+6(6−2x)=−7x−36
    8·2 answers
  • What is the value of x in the equation 4 <br> .<br> +<br> 2
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!