1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
erma4kov [3.2K]
3 years ago
8

A gazelle is running at a constant speed of 19.3 m/s toward a motionless hidden cheetah. At the instant the gazelle passes the c

heetah, the cheetah accelerates at a rate of 7.1 m/s/s in pursuit of the gazelle. The gazelle maintains its constant speed. By the time the cheetah reaches a speed of 19.3 m/s to match the gazelle, how far apart are the two animals in units of m
Physics
1 answer:
mafiozo [28]3 years ago
8 0

Answer:

the animals are 26.2 meters apart.

Explanation:

Let's define t = 0s as the moment when the cheetah starts accelerating.

The gazelle moves with constant velocity, thus, it is not accelerating, then the acceleration of the gazelle is:

a₁(t) = 0m/s^2

where I will use the subscript "1" to refer to the gazelle and "2" to refer to the cheetah.

for the velocity of the gazelle we just integrate over time to get:

v₁(t) = V0

where V0 is the initial speed of the gazelle, which we know is 19.3 m/s

v₁(t) = 19.3 m/s

To get the position of the gazelle we integrate again:

p₁(t) = ( 19.3 m/s)*t + P0

where P0 is the position of the gazelle at t = 0s, let's define P0 = 0m

p₁(t) = ( 19.3 m/s)*t

The equations that describe the motion of the gazelle are:

a₁(t) = 0m/s^2

v₁(t) = 19.3 m/s

p₁(t) = ( 19.3 m/s)*t

Now let's do the same for the cheetah.

We know that its acceleration is 7.1 m/s^2

then:

a₂(t) =  7.1 m/s^2

for the velocity of the cheetah we integrate:

v₂(t) = (7.1 m/s^2)*t + V0

where v0 is the initial velocity of the cheetah, which we know its zero.

v₂(t) = (7.1 m/s^2)*t

Finally, for the position equation we integrate again, and remember that we have defined the initial position for the gazelle as zero, then the same happens for the cheetah.

p₂(t) = (1/2)*(7.1 m/s^2)*t^2

The equations for the cheetah are:

a₂(t) =  7.1 m/s^2

v₂(t) = (7.1 m/s^2)*t

p₂(t) = (1/2)*(7.1 m/s^2)*t^2

Now, we want to find the distance between both animals when the speed of the cheetah is 19.3 m/s, then first we need to solve:

v₂(t) = (7.1 m/s^2)*t =  19.3 m/s

t = (19.3 m/s)/(7.1 m/s^2) = 2.72s

Now, to find the distance between the two animals, we just compute the difference between the position equations for t = 2.72s

Distance = p₁(2.72s)  -  p₂(2.72s)

               = ( 19.3 m/s)*2.72s -  (1/2)*(7.1 m/s^2)*(2.72s)^2

               = 26.2 m

So the animals are 26.2 meters apart.

You might be interested in
A large, 68.0-kg cubical block of wood with uniform density is floating in a freshwater lake with 20.0% of its volume above the
LenaWriter [7]

Answer:

a) V = 0.085 m^3

b) m = 17 kg

Explanation:

1) Data given

mb = 68 kg (mass for the block)

20% of the block volume is floating

100-20= 80% of the block volume is submerged

2) Notation

mb= mass of the block

Vw= volume submerged

mw = mass water displaced

V= total volume for the block

3) Forces involved (part a)

For this case we have two forces the buoyant force (B), defined as the weight of water displaced acting upward and the weight acting downward (W)

Since we have an equilibrium system we can set the forces equal. By definition the buoyant force is given by :

B = (mass water displaced) g = (mw) g   (1)

The definition of density is :

\rho_w = \frac{m_w}{V_w}

If we solve for mw we got m_w = \rho_w V_w  (2)

Replacing equation (2) into equation (1) we got:

B = \rho_w V_w g (3)

On this case Vw represent the volume of water displaced = 0.8 V

If we replace the values into equation (3) we have

0.8 ρ_w V g = mg  (4)

And solving for V we have

 V =  (mg)/(0.8 ρ_w g )

We cancel the g in the numerator and the denominator we got

V = (m)/(0.8 ρ_w)

V = 68kg /(0.8 x 1000 kg/m^3) = 0.085 m^3

4) Forces involved (part b)

For this case we have bricks above the block, and we want the maximum mass for the bricks without causing  it to sink below the water surface.

We can begin finding the weight of the water displaced when the block is just about to sink (W1)

W1 = ρ_w V g

W1 = 1000 kg/m^3 x 0.085 m^3 x 9.8 m/s^2 = 833 N

After this we can calculate the weight of water displaced before putting the bricks above (W2)

W2 = 0.8 x 833 N = 666.4 N

So the difference between W1 and W2 would represent the weight that can be added with the bricks (W3)

W3 = W1 -W2 = 833-666.4 N = 166.6 N

And finding the mass fro the definition of weight we have

m3 = (166.6 N)/(9.8 m/s^2) = 17 Kg

8 0
3 years ago
A toy rocket launcher can project a toy rocket at a speed as high as 35.0 m/s.
Anestetic [448]

Answer:

(a) 62.5 m

(b) 7.14 s

Explanation:

initial speed, u = 35 m/s

g = 9.8 m/s^2

(a) Let the rocket raises upto height h and at maximum height the speed is zero.

Use third equation of motion

v^{2}=u^{2}+2as

0^{2}=35^{2}- 2 \times 9.8 \times h

h = 62.5 m

Thus, the rocket goes upto a height of 62.5 m.

(b) Let the rocket takes time t to reach to maximum height.

By use of first equation of motion

v = u + at

0 = 35 - 9.8 t

t = 3.57 s

The total time spent by the rocket in air = 2 t = 2 x 3.57 = 7.14 second.

8 0
3 years ago
Which of the following is an example of an anaerobic exercise?
Nataly [62]
Sitting. Because its no move at all
7 0
3 years ago
Why the momentum is derived unit?​
Katena32 [7]

Answer:

Explanation:

Momentum: has a units of m*v.

mass is a primary unit (kg)

V: derived  it is made up of distance (meters) and seconds

7 0
3 years ago
Calculate the weight of an apple of mass 100grams on Earth
11111nata11111 [884]

Answer:

In physics the standard unit of weight is Newton, and the standard unit of mass is the kilogram. On Earth, a 1 kg object weighs 9.8 N, so to find the weight of an object in N simply multiply the mass by 9.8 N. Or, to find the mass in kg, divide the weight by 9.8 N.

Explanation:

<em><u>Radhe</u></em><em><u> </u></em><em><u>Radhe</u></em><em><u>❤</u></em>

8 0
3 years ago
Other questions:
  • Shortly after receiving a traffic ticket for speeding, Fred made numerous comments about the road signs being inadequate and is
    15·1 answer
  • What is the longest wavelength λ of light that will provide photons of sufficient energy to break the π bond and cause the isome
    11·1 answer
  • A small block of mass m on a horizontal frictionless surface is attached to a horizontal spring that has force constant k. The b
    7·1 answer
  • What areas of a magnet have the strongest magnetic effect
    9·2 answers
  • Physics is explicitly involved in studying which of these activities?
    11·1 answer
  • Please give me concept to solve this.
    8·1 answer
  • Which of the following situation is an example of environmental racism?
    8·2 answers
  • I need help ASAPP
    10·1 answer
  • What is the difference between an open and closed circuit?
    11·1 answer
  • A country creates a park to protect a forest, what type of resource?
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!