1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
UkoKoshka [18]
3 years ago
8

A large, 68.0-kg cubical block of wood with uniform density is floating in a freshwater lake with 20.0% of its volume above the

surface of the water.
You want to load bricks onto the floating block and then push it horizontally through the water to an island where you are building an outdoor grill.

a. What is the volume of the block? Express your answer with the appropriate units
b. What is the maximum mass of bricks that you can place on the block without causing
it to sink below the water surface? Express your answer with the appropriate units
Physics
1 answer:
LenaWriter [7]3 years ago
8 0

Answer:

a) V = 0.085 m^3

b) m = 17 kg

Explanation:

1) Data given

mb = 68 kg (mass for the block)

20% of the block volume is floating

100-20= 80% of the block volume is submerged

2) Notation

mb= mass of the block

Vw= volume submerged

mw = mass water displaced

V= total volume for the block

3) Forces involved (part a)

For this case we have two forces the buoyant force (B), defined as the weight of water displaced acting upward and the weight acting downward (W)

Since we have an equilibrium system we can set the forces equal. By definition the buoyant force is given by :

B = (mass water displaced) g = (mw) g   (1)

The definition of density is :

\rho_w = \frac{m_w}{V_w}

If we solve for mw we got m_w = \rho_w V_w  (2)

Replacing equation (2) into equation (1) we got:

B = \rho_w V_w g (3)

On this case Vw represent the volume of water displaced = 0.8 V

If we replace the values into equation (3) we have

0.8 ρ_w V g = mg  (4)

And solving for V we have

 V =  (mg)/(0.8 ρ_w g )

We cancel the g in the numerator and the denominator we got

V = (m)/(0.8 ρ_w)

V = 68kg /(0.8 x 1000 kg/m^3) = 0.085 m^3

4) Forces involved (part b)

For this case we have bricks above the block, and we want the maximum mass for the bricks without causing  it to sink below the water surface.

We can begin finding the weight of the water displaced when the block is just about to sink (W1)

W1 = ρ_w V g

W1 = 1000 kg/m^3 x 0.085 m^3 x 9.8 m/s^2 = 833 N

After this we can calculate the weight of water displaced before putting the bricks above (W2)

W2 = 0.8 x 833 N = 666.4 N

So the difference between W1 and W2 would represent the weight that can be added with the bricks (W3)

W3 = W1 -W2 = 833-666.4 N = 166.6 N

And finding the mass fro the definition of weight we have

m3 = (166.6 N)/(9.8 m/s^2) = 17 Kg

You might be interested in
The mass of a car is 2,400 kg and its momentum is 22,240 kg<br> m/s. What is its velocity?
Crazy boy [7]

Answer:

9.27

Explanation:

6 0
3 years ago
Which form of energy is equal to the sum of an object’s kinetic and potential energy?
Natali5045456 [20]

Answer:

Mechanical Energy

Explanation:

The sum of kinetic energy and potential energy of an object is its total mechanical energy.

4 0
3 years ago
A car is initially travelling at 12.1m/s It accelerates at a rate of -3.9m/s^2 for 7 seconds. What is it’s final velocity?
rosijanka [135]
It will be traveling in the reverse direction it was originally going at 15.2 m/s
8 0
3 years ago
How many turns are in its secondary coil, if its input voltage is 120 V and the primary coil has 210 turns
Tasya [4]

Complete Question

How many turns are in its secondary coil, if its input voltage is 120 V and the primary coil has 210 turns.

The output from the secondary coil is  12 V

Answer:

The value  is  N_s  =  21 \  turns

Explanation:

From the equation we are told that

   The input voltage is  V_{in}  = 120 \ V

   The number of turns of the primary coil is N_p =  210 \  turn

    The output from the secondary is V_o =  12V

From the transformer equation

   \frac{N_p}{V_{in}}  =\frac{N_s}{V_o}

Here N_s is the number of turns in the secondary coil

=> N_s  =  \frac{N_p}{V_{in}}  *  V_s

=>N_s  =  \frac{210}{120}  *  12

=>N_s  =  21 \  turns

4 0
4 years ago
A square is 10 cm by 10 cm a student measure inside of the square is 9.9 cm and uses the measurements to calculate the area of t
Furkat [3]

Answer:1.5 2.15

Explanation:

2,5

5 0
3 years ago
Other questions:
  • Part a consider another special case in which the inclined plane is vertical (θ=π/2). in this case, for what value of m1 would t
    7·1 answer
  • What do deltas and natural levees have in common?
    11·1 answer
  • If a fluid has high viscosity, does it flow faster or slower than a fluid with less viscosity?
    8·2 answers
  • A 0.454-kg block is attached to a horizontal spring that is at its equilibrium length, and whose force constant is 21.0 N/m. The
    10·1 answer
  • What is the equivalent resistance of a circuit that contains two 50.0 resistors connected in parallel with a 12.0 V battery?
    7·2 answers
  • To produce work a gas is expanded adiabatically from 3 MPa and 300oC to 80 kPa in a piston-cylinder device. Which of these two c
    11·1 answer
  • Complete combustion of 1.11 0 g of a gaseous hydrocarbon yields 3.613 g of carbon dioxide and one 1.109 g of water. 80.288 g sam
    6·1 answer
  • What is the fundamental unit for measuring mass in the metric system ?
    15·2 answers
  • Please help!
    7·2 answers
  • Which statement uses power correctly? (1 point)
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!