1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
UkoKoshka [18]
3 years ago
8

A large, 68.0-kg cubical block of wood with uniform density is floating in a freshwater lake with 20.0% of its volume above the

surface of the water.
You want to load bricks onto the floating block and then push it horizontally through the water to an island where you are building an outdoor grill.

a. What is the volume of the block? Express your answer with the appropriate units
b. What is the maximum mass of bricks that you can place on the block without causing
it to sink below the water surface? Express your answer with the appropriate units
Physics
1 answer:
LenaWriter [7]3 years ago
8 0

Answer:

a) V = 0.085 m^3

b) m = 17 kg

Explanation:

1) Data given

mb = 68 kg (mass for the block)

20% of the block volume is floating

100-20= 80% of the block volume is submerged

2) Notation

mb= mass of the block

Vw= volume submerged

mw = mass water displaced

V= total volume for the block

3) Forces involved (part a)

For this case we have two forces the buoyant force (B), defined as the weight of water displaced acting upward and the weight acting downward (W)

Since we have an equilibrium system we can set the forces equal. By definition the buoyant force is given by :

B = (mass water displaced) g = (mw) g   (1)

The definition of density is :

\rho_w = \frac{m_w}{V_w}

If we solve for mw we got m_w = \rho_w V_w  (2)

Replacing equation (2) into equation (1) we got:

B = \rho_w V_w g (3)

On this case Vw represent the volume of water displaced = 0.8 V

If we replace the values into equation (3) we have

0.8 ρ_w V g = mg  (4)

And solving for V we have

 V =  (mg)/(0.8 ρ_w g )

We cancel the g in the numerator and the denominator we got

V = (m)/(0.8 ρ_w)

V = 68kg /(0.8 x 1000 kg/m^3) = 0.085 m^3

4) Forces involved (part b)

For this case we have bricks above the block, and we want the maximum mass for the bricks without causing  it to sink below the water surface.

We can begin finding the weight of the water displaced when the block is just about to sink (W1)

W1 = ρ_w V g

W1 = 1000 kg/m^3 x 0.085 m^3 x 9.8 m/s^2 = 833 N

After this we can calculate the weight of water displaced before putting the bricks above (W2)

W2 = 0.8 x 833 N = 666.4 N

So the difference between W1 and W2 would represent the weight that can be added with the bricks (W3)

W3 = W1 -W2 = 833-666.4 N = 166.6 N

And finding the mass fro the definition of weight we have

m3 = (166.6 N)/(9.8 m/s^2) = 17 Kg

You might be interested in
What are the blue or red big dancing thing infront of a car wash called thank you
Alenkinab [10]
it’s called a tube man
6 0
2 years ago
Read 2 more answers
An underwater scuba diver sees the Sun at an apparent angle of 43.0° above the horizontal. What is the actual elevation angle of
Inessa05 [86]

Answer:

The actual elevation angle is 12.87 degrees

Explanation:

In the attachment you can clearly see the situation. The angle of elevation as seen for the scuba diver is shown in magenta, we conclude that \theta_2=90-43=47.

Using Snell's Law we can write:

n_1\sin(\theta_1)=n_2\sin(\theta_2)

\implies \sin(\theta_1)=\frac{n_2}{n_1}\sin(\theta_2),

Let's approximate the index of refraction of the air (medium 1 in the picture) to 1.

We thus have:

\sin(\theta_1)=n_2\sin(\theta_2)=1.333\sin(47)

\implies\theta_1=\arcsin[n_2\sin(\theta_2)]=\arcsin[1.333\sin(47)]\approx 77.13. Calling \alpha the actual angle of elevation, we get from the picture that \alpha=90-77.13=12.97

7 0
3 years ago
Two different sources of radiation give the same dose equivalent in Sv. Does this mean that the radiation from each source has t
Alisiya [41]

The product of the dosage Gy and relative biological efficiency yields a radiation dose equivalent Sv (RBE).

Sv =dose in Gy * RBE Sv=dose in GyRBE

The quantity of ionising energy absorbed by 1 text kg1 kg of tissue is defined as a radiation dose Gy. While RBE is a measure of a specific dose's biological effect relative to the biological effect of an equal quantity of X rays.

<h3>What is radiation?</h3>

Radiation is energy that moves through space at the speed of light from a source. This energy is coupled with an electric and magnetic field, and it exhibits wave-like qualities. Radiation is sometimes known as "electromagnetic waves."

Nature has a diverse variety of electromagnetic radiation. One example is visible light.

X-rays and gamma rays are extremely energetic. They may take electrons from atoms when they engage with them, causing the atom to become ionised.

learn more about Radiation refer:

brainly.com/question/893656

#SPJ4

5 0
2 years ago
Which type of curved mirror uses its inside as the reflecting surface? A. a convex mirror B. a plane mirror C. a virtual mirror
ser-zykov [4K]

D. a concave mirror

6 0
3 years ago
Read 2 more answers
A sprinter set a high school record in track and field, running 200.0 m in 20.6 s . what is the average speed of the sprinter in
Paraphin [41]

Answer : The average speed of the sprinter is, 34.95 Km/hr

Solution :

Average velocity : It is defined as the distance traveled by the time taken.

Formula used for average velocity :

v_{av}=\frac{d}{t}

where,

v_{av} = average velocity

d = distance traveled = 200 m

t = time taken = 20.6 s

Now put all the given values in the above formula, we get the average velocity of the sprinter.

v_{av}=\frac{200m}{20.6s}\times \frac{3600}{1000}=34.95Km/hr

conversion :

(1 Km = 1000m)

(1 hr = 3600 s)

Therefore, the average speed of the sprinter is, 34.95 Km/hr

8 0
2 years ago
Read 2 more answers
Other questions:
  • Development of the Grand Canyon through the uplift of the plateau and erosion by the Colorado River illustrates that:
    13·2 answers
  • A force is described by its BLANK and by the direction in which it acts
    15·1 answer
  • 6. A billiard ball traveling at 4.0 m/s has an elastic head-on collision with a billiard ball of equal mass
    9·1 answer
  • Are momentum and kinetic energy conserved during an inelastic collision?
    9·1 answer
  • If the motor exerts a constant force of 300 N on the cable, determine the speed of the 26-kg crate when it travels s = 10 m up t
    10·1 answer
  • Condensation is the process of ____________________.
    14·1 answer
  • _____ waves are Longitudinal waves caused by an earthquake!
    7·2 answers
  • A battery is connected to a 10 resistor and produces a current of 0.2 A in the circuit. If the resistor is replaced with a 20 re
    7·1 answer
  • 7. How much time does it take a person to walk 8
    13·1 answer
  • A 0.85 kg soccer ball is booted straight up in the air. If it left the soccer player's foot at a height of 1.0 m and reaches a h
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!