Answer:
u = 11.6 m/s
Explanation:
The end of a launch ramp is directed 63° above the horizontal. A skier attains a height of 10.9 m above the end of the ramp.
Maximum height, H = 10.9
Let v is the launch speed of the skier. The maximum height attained by the projectile is given by :


u = 11.6 m/s
So, the launch speed of the skier is 11.6 m/s. Hence, this is the required solution.
Answer:
B) resistance
Explanation:
the resistance of a wire is proportional to its length, and inversely proportional to its cross-sectional area.
<span><span>anonymous </span> 4 years ago</span>Any time you are mixing distance and acceleration a good equation to use is <span>ΔY=<span>V<span>iy</span></span>t+1/2a<span>t2</span></span> I would split this into two segments - the rise and the fall. For the fall, Vi = 0 since the player is at the peak of his arc and delta-Y is from 1.95 to 0.890.
For the upward part of the motion the initial velocity is unknown and the final velocity is zero, but motion is symetrical - it takes the same amount of time to go up as it does to go down. Physiscists often use the trick "I'm going to solve a different problem, that I know will give me the same answer as the one I was actually asked.) So for the first half you could also use Vi = 0 and a downward delta-Y to solve for the time.
Add the two times together for the total.
The alternative is to calculate the initial and final velocity so that you have more information to work with.
To model time-variant data, one must create a new entity in an m:n relationship with the original entity, is a False statement.
- Like the majority of software engineering initiatives, the ER process begins with gathering user requirements. What information must be retained, what questions must be answered, and what business rules must be implemented (For instance, if the manager column in the DEPARTMENT table is the only column, we have simply committed to having one manager for each department.)
- The end result of the E-R modeling procedure is an E-R diagram that can be roughly mechanically transformed into a set of tables. Tables will represent both entities and relationships; entity tables frequently have a single primary key, but the primary key for relationship tables nearly invariably involves numerous characteristics.
To know more about entity AND relationship visit : brainly.com/question/28232864
#SPJ4