Answer:
6b
Step-by-step explanation:
Answer:
<h2>A. (0,1)</h2>
Step-by-step explanation:
The question lacks the e=required option. Find the complete question below with options.
Which of the following points does not belong to the quadratic function
f(x) = 1-x²?
a.(0,1) b.(1,0) c.(-1,0)
Let f(x) = 0
The equation becomes 1-x² = 0
Solving 1-x² = 0 for x;
subtract 1 from both sides;
1-x²-1 = 0-1
-x² = -1
multiply both sides by minus sign
-(-x²) = -(-1)
x² = 1
take square root of both sides;
√x² = ±√1
x = ±1
x = 1 and x = -1
when x = 1
f(x) = y = 1-1²
y = 1-1
y = 0
when x = -1
f(x) = y = 1-(-1)²
y = 1-1
y = 0
Hence the coordinate of the function f(x) = 1-x² are (±1, 0) i.e (1, 0) and (-1, 0). The point that does not belong to the quadratic function is (0, 1)
Answer:
Step-by-step explanation:
Vertex A of the triangle ABC when rotated by 90° counterclockwise about the origin,
Rule to be followed,
A(x, y) → P(-y, x)
Therefore, A(1, 1) → P(-1, 1)
Similarly, B(3, 2) → Q(-2, 3)
C(2, 5) → R(-5, 2)
Triangle given in second quadrant will be the triangle PQR.
If the point P of triangle PQR is reflected across a line y = x,
Rule to be followed,
P(x, y) → X(y, x)
P(-1, 1) → X(1, -1)
Similarly, Q(-2, 3) → Y(3, -2)
R(-5, 2) → Z(2, -5)
Therefore, triangle given in fourth quadrant is triangle XYZ.
Answer:
Slope
Step-by-step explanation:
slope is the ratio of the vertical and horizontal changes between two points on a surface or a line