Answer:
D-slower than the clock on the rocket.
Explanation:
In 1905, Albert Einstein devised the theory that states that laws of physics are the same for all non-accelerating observers, and that the speed of light in a vacuum was independent of the motion of all observers. This conclusion is generally referred to as the theory of special relativity. It defined an entirely new framework for physics as well as proposed new concepts of space and time.
He discovered that space and time were interwoven into a single continuum known as space-time. According to him, events that occur at the same time for one observer could occur at different times for another, hence the answer.
Answer:
A: 4
B: 7
C. 3
Source:
Trust me bro
(Don’t act put this I jus need to answer questions sorry)<\3
Answer: part a: 19.62m
part b: 19.62 m/s
part a: 2.83 secs
Explanation:If the air resistance is ignored then the swimmer experience free fall under gravity hence
u=0
a=9.81 m/s2
t=2 secs

s=h

Part b

Part c
now we have h=2*19.62=39.24

No it's the quite opposite simple
You would be correct.
Because you have only JUST released the arrow, and how close he is to the target, it would have the same amount of energy when it strikes the target. Yes, the kinetic energy would be destroyed when you hit the target but not right away. And yes, the potential energy would also be destroyed once you release the arrow, but it goes straight back once it stops moving, aka when it hits the target, although it has only just stopped moving.
Hope this helps!