Theodore Richards; first scienstist to recieve nobel prize in Chemistry, earning the award "in recognition of his exact determinations of atomic weights of a large number of chemical elements."
The earth has enough gravity to do that
The choices that should have accompanied this question were:
A. 1
<span>B. 2 </span>
<span>C. 3 </span>
<span>D. 4
</span>
My answer is B. 2.
Below is an explanation, I found while doing the research.
<span>Phosphate needs 3 electrons each totaling 6 electrons so each zinc will need to give up 2 electrons.
Phosphate wants to imitate the electron configuration of Argon because noble configurations are the most stable. With P getting the extra electrons the valence shell will be 3s2 3p6, which is the same as Argon. Without the extra electrons, the P valence shell looks like this 3s2 3p3, now you can see why each phosphorus wants 3 more electrons, that will make it 3s2 3p6, just like Argon.</span>
Answer: P₂=0.44 atm
Explanation:
For this problem, we are dealing with temperature and pressure. We will need to use Gay-Lussac's Law.
Gay-Lussac's Law: 
First, let's do some conversions. Anytime we deal with the Ideal Gas Law and the different laws, we need to make sure our temperature is in Kelvins. Since T₂ is 64°C, we must change it to K.
64+273K=337K
Now, it may be uncomfortable to use kPa instead of atm, so let's convert kPa to atm.

Since our units are in atm and K, we can use Gay-Lussac's Law to find P₂.


P₂=0.44 atm