Answer:
CV for statistics exam = 15%
CV for calculus exam = 19%
Since the CV for calculus exam is higher, it has a greater spread relative to the mean than the statistics exam.
Step-by-step explanation:
To find coefficient variation we use the formula:
CV = (SD/mean) * 100
CV for the statistics exam:
where; SD= 5
mean= 75
CV = ( 5/75) *100
= 0.15 or 15%
CV for calculus exam
SD = 11
Mean= 58
CV= (11 /58) * 100
= 0.19 or 19%
Answer:
14
Step-by-step explanation:
When the X term is one, and doesn't have a leading coefficient, then you can factor it using the box and diamond method. look up videos on Khan Academy of the box and diamond method for solving trinomials. For number 9, you have a difference of squares. That means you can factor to just 2 terms. (x+4)(x-4) this works because 16 has an easy square root, and the sign in between is a negative(difference)
H = 3b+2
A = (h*b)/2 28 = (3b+2)b/2 56 = 3b²+2b 0 = 3b² + 2b - 56
⊕
![\left \{ {{y=2} \atop {x=2}} \right. \int\limits^a_b {x} \, dx \lim_{n \to \infty} a_n \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \beta \\ \\ \\ x^{2} \sqrt{x} \sqrt[n]{x} \frac{x}{y} x_{123} x^{123} \leq \geq \pi \alpha \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] x_{123} \int\limits^a_b {x} \, dx \left \{ {{y=2} \atop {x=2}}](https://tex.z-dn.net/?f=%20%5Cleft%20%5C%7B%20%7B%7By%3D2%7D%20%5Catop%20%7Bx%3D2%7D%7D%20%5Cright.%20%20%5Cint%5Climits%5Ea_b%20%7Bx%7D%20%5C%2C%20dx%20%20%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20a_n%20%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%262%263%5C%5C4%265%266%5C%5C7%268%269%5Cend%7Barray%7D%5Cright%5D%20%20%5Cbeta%20%20%5C%5C%20%20%5C%5C%20%20%5C%5C%20%20x%5E%7B2%7D%20%20%5Csqrt%7Bx%7D%20%20%5Csqrt%5Bn%5D%7Bx%7D%20%20%5Cfrac%7Bx%7D%7By%7D%20%20x_%7B123%7D%20%20x%5E%7B123%7D%20%20%5Cleq%20%20%5Cgeq%20%20%5Cpi%20%20%5Calpha%20%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%262%263%5C%5C4%265%266%5C%5C7%268%269%5Cend%7Barray%7D%5Cright%5D%20%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%262%263%5C%5C4%265%266%5C%5C7%268%269%5Cend%7Barray%7D%5Cright%5D%20%20x_%7B123%7D%20%20%5Cint%5Climits%5Ea_b%20%7Bx%7D%20%5C%2C%20dx%20%20%5Cleft%20%5C%7B%20%7B%7By%3D2%7D%20%5Catop%20%7Bx%3D2%7D%7D)
ω
l
∩
Answer:
Height = 14.4
Step-by-step explanation:
The diagonals meet at right angles. Interesting property.
The hypotenuse is the side of the rhombus = 15 cm
One of the sides of the small triangles created by the intersection of the diagonals = 24/2 = 12
You can find the other side of the the triangle by using the Pythagorean Theorem
a^2 + b^2 = c^2
c = 15
a = 12
b = ?
12^2 + b^2 = 15^2
144 + b^2 = 225
b^2 = 225 - 144
b^2 = 81
b = 9
The area of this right angle = 9 * 12/2 = 54
There are 4 of them so 4 * 54 = 216
That's the area of the rhombus.
The h= Area / b
b = 15
h = 216/15
h = 14.4