Answer:
The correct option is A.
Step-by-step explanation:
Domain:
The expression in the denominator is x^2-2x-3
x² - 2x-3 ≠0
-3 = +1 -4
(x²-2x+1)-4 ≠0
(x²-2x+1)=(x-1)²
(x-1)² - (2)² ≠0
∴a²-b² =(a-b)(a+b)
(x-1-2)(x-1+2) ≠0
(x-3)(x+1) ≠0
x≠3 for all x≠ -1
So there is a hole at x=3 and an asymptote at x= -1, so Option B is wrong
Asymptote:
x-3/x^2-2x-3
We know that denominator is equal to (x-3)(x+1)
x-3/(x-3)(x+1)
x-3 will be cancelled out by x-3
1/x+1
We have asymptote at x=-1 and hole at x=3, therefore the correct option is A....
Answer:
(a) The sample sizes are 6787.
(b) The sample sizes are 6666.
Step-by-step explanation:
(a)
The information provided is:
Confidence level = 98%
MOE = 0.02
n₁ = n₂ = n

Compute the sample sizes as follows:



Thus, the sample sizes are 6787.
(b)
Now it is provided that:

Compute the sample size as follows:

![n=\frac{(z_{\alpha/2})^{2}\times [\hat p_{1}(1-\hat p_{1})+\hat p_{2}(1-\hat p_{2})]}{MOE^{2}}](https://tex.z-dn.net/?f=n%3D%5Cfrac%7B%28z_%7B%5Calpha%2F2%7D%29%5E%7B2%7D%5Ctimes%20%5B%5Chat%20p_%7B1%7D%281-%5Chat%20p_%7B1%7D%29%2B%5Chat%20p_%7B2%7D%281-%5Chat%20p_%7B2%7D%29%5D%7D%7BMOE%5E%7B2%7D%7D)
![=\frac{2.33^{2}\times [0.45(1-0.45)+0.58(1-0.58)]}{0.02^{2}}\\\\=6665.331975\\\\\approx 6666](https://tex.z-dn.net/?f=%3D%5Cfrac%7B2.33%5E%7B2%7D%5Ctimes%20%5B0.45%281-0.45%29%2B0.58%281-0.58%29%5D%7D%7B0.02%5E%7B2%7D%7D%5C%5C%5C%5C%3D6665.331975%5C%5C%5C%5C%5Capprox%206666)
Thus, the sample sizes are 6666.
Answer:
60
Step-by-step explanation:
If 478 out of 534 parking spaces are taken, then you will be <u>subtracting</u>. When you subtract 534 and 478 (534-478), then you get 54. Remember 5 and up round to 10. 4 and below round to 0. So 56 rounds to 60 because 6 is greater than 5.
Hope it helps!
Answer:
8 were absent
Step-by-step explanation:
20% of 40 is 8
Answer:
p = 10.8
Step-by-step explanation:
Given that p is directly proportional to (p-1)² and p is always positive, then;
q = k (p-1)²
If q = 30 and p = 7
30 = k(7-1)²
30 = 6²k
30 = 36k
5 = 6k
k = 5/6
To get p when q = 80
q =k (p-1)²
80 = 5/6((p-1)²
480 = 5(p-1)²
480/5 = (p-1)²
(p-1)² = 96
p-1 = √96
p-1 = 9.8
p = 9.8 + 1
p = 10.8
B) 6
Ch 10.82