X=1/5+2/5√14 or 1/5 + -2/5√14
Answer:
$1,800.
Step-by-step explanation:
15 x 15 = 225
225 x 8 = 1800
Feel free to let me know if you need more help! :)
100-10=90
450=90% of original find 100%
divide by 9
50=10%
times 10
500=100%
origianl price=$500 (this is the hack way that only works with nice numbers)
If you're using the app, try seeing this answer through your browser: brainly.com/question/2927231————————
You can actually use either the product rule or the chain rule for this one. Observe:
• Method I:y = cos² xy = cos x · cos xDifferentiate it by applying the product rule:
![\mathsf{\dfrac{dy}{dx}=\dfrac{d}{dx}(cos\,x\cdot cos\,x)}\\\\\\ \mathsf{\dfrac{dy}{dx}=\dfrac{d}{dx}(cos\,x)\cdot cos\,x+cos\,x\cdot \dfrac{d}{dx}(cos\,x)}](https://tex.z-dn.net/?f=%5Cmathsf%7B%5Cdfrac%7Bdy%7D%7Bdx%7D%3D%5Cdfrac%7Bd%7D%7Bdx%7D%28cos%5C%2Cx%5Ccdot%20cos%5C%2Cx%29%7D%5C%5C%5C%5C%5C%5C%0A%5Cmathsf%7B%5Cdfrac%7Bdy%7D%7Bdx%7D%3D%5Cdfrac%7Bd%7D%7Bdx%7D%28cos%5C%2Cx%29%5Ccdot%20cos%5C%2Cx%2Bcos%5C%2Cx%5Ccdot%20%5Cdfrac%7Bd%7D%7Bdx%7D%28cos%5C%2Cx%29%7D)
The derivative of
cos x is
– sin x. So you have
![\mathsf{\dfrac{dy}{dx}=(-sin\,x)\cdot cos\,x+cos\,x\cdot (-sin\,x)}\\\\\\ \mathsf{\dfrac{dy}{dx}=-sin\,x\cdot cos\,x-cos\,x\cdot sin\,x}](https://tex.z-dn.net/?f=%5Cmathsf%7B%5Cdfrac%7Bdy%7D%7Bdx%7D%3D%28-sin%5C%2Cx%29%5Ccdot%20cos%5C%2Cx%2Bcos%5C%2Cx%5Ccdot%20%28-sin%5C%2Cx%29%7D%5C%5C%5C%5C%5C%5C%0A%5Cmathsf%7B%5Cdfrac%7Bdy%7D%7Bdx%7D%3D-sin%5C%2Cx%5Ccdot%20cos%5C%2Cx-cos%5C%2Cx%5Ccdot%20sin%5C%2Cx%7D)
![\therefore~~\boxed{\begin{array}{c}\mathsf{\dfrac{dy}{dx}=-2\,sin\,x\cdot cos\,x}\end{array}}\qquad\quad\checkmark](https://tex.z-dn.net/?f=%5Ctherefore~~%5Cboxed%7B%5Cbegin%7Barray%7D%7Bc%7D%5Cmathsf%7B%5Cdfrac%7Bdy%7D%7Bdx%7D%3D-2%5C%2Csin%5C%2Cx%5Ccdot%20cos%5C%2Cx%7D%5Cend%7Barray%7D%7D%5Cqquad%5Cquad%5Ccheckmark)
—————
• Method II:You can also treat
y as a composite function:
![\left\{\! \begin{array}{l} \mathsf{y=u^2}\\\\ \mathsf{u=cos\,x} \end{array} \right.](https://tex.z-dn.net/?f=%5Cleft%5C%7B%5C%21%0A%5Cbegin%7Barray%7D%7Bl%7D%0A%5Cmathsf%7By%3Du%5E2%7D%5C%5C%5C%5C%0A%5Cmathsf%7Bu%3Dcos%5C%2Cx%7D%0A%5Cend%7Barray%7D%0A%5Cright.)
and then, differentiate
y by applying the chain rule:
![\mathsf{\dfrac{dy}{dx}=\dfrac{dy}{du}\cdot \dfrac{du}{dx}}\\\\\\ \mathsf{\dfrac{dy}{dx}=\dfrac{d}{du}(u^2)\cdot \dfrac{d}{dx}(cos\,x)}](https://tex.z-dn.net/?f=%5Cmathsf%7B%5Cdfrac%7Bdy%7D%7Bdx%7D%3D%5Cdfrac%7Bdy%7D%7Bdu%7D%5Ccdot%20%5Cdfrac%7Bdu%7D%7Bdx%7D%7D%5C%5C%5C%5C%5C%5C%0A%5Cmathsf%7B%5Cdfrac%7Bdy%7D%7Bdx%7D%3D%5Cdfrac%7Bd%7D%7Bdu%7D%28u%5E2%29%5Ccdot%20%5Cdfrac%7Bd%7D%7Bdx%7D%28cos%5C%2Cx%29%7D)
For that first derivative with respect to
u, just use the power rule, then you have
![\mathsf{\dfrac{dy}{dx}=2u^{2-1}\cdot \dfrac{d}{dx}(cos\,x)}\\\\\\ \mathsf{\dfrac{dy}{dx}=2u\cdot (-sin\,x)\qquad\quad (but~~u=cos\,x)}\\\\\\ \mathsf{\dfrac{dy}{dx}=2\,cos\,x\cdot (-sin\,x)}](https://tex.z-dn.net/?f=%5Cmathsf%7B%5Cdfrac%7Bdy%7D%7Bdx%7D%3D2u%5E%7B2-1%7D%5Ccdot%20%5Cdfrac%7Bd%7D%7Bdx%7D%28cos%5C%2Cx%29%7D%5C%5C%5C%5C%5C%5C%0A%5Cmathsf%7B%5Cdfrac%7Bdy%7D%7Bdx%7D%3D2u%5Ccdot%20%28-sin%5C%2Cx%29%5Cqquad%5Cquad%20%28but~~u%3Dcos%5C%2Cx%29%7D%5C%5C%5C%5C%5C%5C%0A%5Cmathsf%7B%5Cdfrac%7Bdy%7D%7Bdx%7D%3D2%5C%2Ccos%5C%2Cx%5Ccdot%20%28-sin%5C%2Cx%29%7D)
and then you get the same answer:
![\therefore~~\boxed{\begin{array}{c}\mathsf{\dfrac{dy}{dx}=-2\,sin\,x\cdot cos\,x}\end{array}}\qquad\quad\checkmark](https://tex.z-dn.net/?f=%5Ctherefore~~%5Cboxed%7B%5Cbegin%7Barray%7D%7Bc%7D%5Cmathsf%7B%5Cdfrac%7Bdy%7D%7Bdx%7D%3D-2%5C%2Csin%5C%2Cx%5Ccdot%20cos%5C%2Cx%7D%5Cend%7Barray%7D%7D%5Cqquad%5Cquad%5Ccheckmark)
I hope this helps. =)
Tags: <em>derivative chain rule product rule composite function trigonometric trig squared cosine cos differential integral calculus</em>
<span>Nadine mixes a juice solution that is made from 3 gallons of an 80% juice solution and 1 gallon of a 20% juice solution. What is the percent concentration of the final solution? =</span>65%