First, we should figure out the area of the entire face of the clock because we need that information to solve the problem. The formula for the area of a circle is A=pi*r^2. Since we know that r (radius) is equal to 11.25 feet, we can plug this in for r and solve for A: A=pi*11.25^2 which equals A=397.61 ft^2 rounded to the nearest hundredth.
Now, to find the area the hand sweeps over in 5 minutes, we should determine how much of the clock the hand sweeps over in 5 minutes. Think about it like this: since 5 minutes goes into 60 minutes 12 times (60/5=12), then 5 minutes is one twelfth of the clock's face. Therefore, we are going to divide the total area by 12 (397.61/12) to get 33.13 ft^2, so the answer is C.
I hope this helps.
D to the nearest hundredth is 42.000
Answer:
<em>C. 3.8 years</em>
Step-by-step explanation:
<u>Exponential Growth
</u>
The natural growth of some magnitudes can be modeled by the equation:

Where P is the actual amount of the magnitude, Po is its initial amount, r is the growth rate and t is the time.
The actual population of deer in a forest is Po=800 individuals. It's been predicted the population will grow at a rate of 20% per year (r=0.2).
We have enough information to write the exponential model:


It's required to find the number of years required for the population of deers to double, that is, P = 2*Po = 1600. We need to solve for t:

Dividing by 800:

Taking logarithms:

Dividing by log 1.2:

Calculating:
t = 3.8 years
Answer: C. 3.8 years
Well if you want to turn an improper fraction to a mixed number you just divide the denominator by the numerator if that's what your asking
The answer is 125. Just for you to understand all you have to do is 20 *____ =625 in this case 20*125=625 :)