We have to prove that the tangent is an odd function.
If the tangent is an odd function, the following condition should be satisfied:

From the figure we can see that the tangent can be expressed as:
We can start then from tan(t) and will try to arrive to -tan(-t):

We have arrived to the condition for odd functions, so we have just proved that the tangent function is an odd function.
I agree with the answer above me but i don’t rly know history so good luck
The midpoint of the line segment with endpoints at the given coordinates (-6,6) and (-3,-9) is 
<u>Solution:</u>
Given, two points are (-6, 6) and (-3, -9)
We have to find the midpoint of the segment formed by the given points.
The midpoint of a segment formed by
is given by:


Plugging in the values in formula, we get,

Hence, the midpoint of the segment is 
Most of the square numbers are even.so if we need to find root over we need an even number to convert it to perfect square.
See the example below






Some other triplets are
- (6,8,10)
- (5,12,13)
- (8,15,17)