Because the polynomial has degree 2, we can assume that there are 2 solutions (roots), whether real or imaginary.
You can subtract 60 in order to put this in standard form
48x^2+44x-60 = 0
From there, just put a,b, and c into the quadratic formula and you're good to solve for your answers.
(-b+-sqrt(b^2-4ac))/2a
(-44+-sqrt(44^2-4(48)(-60)))/2(48)
Then solve.
There is probably a better way, but this should give you the two roots/solutions.
Answer:
Step-by-step explanation:
V-0.12V (first option) if we factor it it becomes
V(1-0.12)=0.88V (last option)
Answer:
In graph theory and computer science, an adjacency matrix is a square matrix used to represent a finite graph. The elements of the matrix indicate whether pairs of vertices are adjacent or not in the graph.
In the special case of a finite simple graph, the adjacency matrix is a (0,1)-matrix with zeros on its diagonal. If the graph is undirected, the adjacency matrix is symmetric. The relationship between a graph and the eigenvalues and eigenvectors of its adjacency matrix is studied in spectral graph theory.
The adjacency matrix should be distinguished from the incidence matrix for a graph, a different matrix representation whose elements indicate whether vertex–edge pairs are incident or not, and degree matrix which contains information about the degree of each vertex.
X-intercept is 0
Y-intercept is —4