Surface tension in water owes to the fact that water molecules attract one another, as each molecule forms a bond with the ones in its vicinity. ... This inward net force causes the molecules on the surface to contract and to resist being stretched or broken.
(I'm not 100% positive on this) Dinosaurs, many chickens and birds are related to dinosaurs
Answer:
Volume= 4 cm³
Density= 2 g/cm³
Explanation:
We have the following data:
volume= V= 8 cm³
mass= m= 16 g
The density is the mass per volume of a substance, so the density of the rock is:
density= d= 16 g/8 cm³= 2 g/cm³
When we cut the rock in half, we have a half volume and a half mass:
V= 8 cm³/2= 4 cm³
m= 16 g/2= 8 g
But the density is not altered because it is an intrisic property - it does not change with the amount of subtance. Thus, the density of a half rock is:
d = m/V= 8 g/4 cm³= 2 g/cm³
1) B
(I'm not so sure of this one) All of the other options have a steady impact on population regardless of the density of organisms except competition
2) D
Increased carbon dioxide levels would not hinder plant growth, and tsunamis aren't really linked to carbon dioxide levels. Increased carbon dioxide is unlikely to lower the air temperature so only D is left.
3) A
4) Three properties of water that allow it to sustain life are that it is adhesive, it is a good solvent, and cohesion. Adhesion is important in situations such as water travelling up xylem tubes in plants so that the water is not pulled down by gravity and can reach parts of the plant that need water. Cohesion allows the water being pulled up the xylem to stay together and for water molecules to be pulled when a neighbouring one is moved. Water being a good solvent allows inorganic minerals to be taken with water through vascular tissue, such as in the previous example.
Answer:
A releaser is a stimulus from one animal to another, which causes a particular response.
Explanation:
google