Hello!
First of all, let's add 50 to both sides.
x/-3=50
Now we multiply both sides by -3.
x= -150
I hope this helps!
Answer:it’s 0
Step-by-step explanation:
You do -3 plus 4 and then minus 1 which would be 0
Short AnswerThere are two numbers
x1 = -0.25 + 0.9682i <<<<
answer 1x2 = - 0.25 - 0.9582i <<<<
answer 2 I take it there are two such numbers.
Let one number = x
Let one number = y
x + y = -0.5
y = - 0.5 - x (1)
xy = 1 (2)
Put equation 1 into equation 2
xy = 1
x(-0.5 - x) = 1
-0.5x - x^2 = 1 Subtract 1 from both sides.
-0.5x - x^2 - 1 = 0 Order these by powers
-x^2 - 0.5x -1 = 0 Multiply though by - 1
x^2 + 0.5x + 1 = 0 Use the quadratic formula to solve this.
a = 1
b = 0.5
c = 1
x = [-0.5 +/- sqrt(0.25 - 4)] / 2
x = [-0.5 +/- sqrt(-3.75)] / 2
x = [-0.25 +/- 0.9682i
x1 = -0.25 + 0.9682 i
x2 = -0.25 - 0.9682 i
These two are conjugates. They will add as x1 + x2 = -0.25 - 0.25 = - 0.50.
The complex parts cancel out. Getting them to multiply to 1 will be a little more difficult. I'll do that under the check.
Check(-0.25 - 0.9682i)(-0.25 + 0.9682i)
Use FOIL
F:-0.25 * -0.25 = 0.0625
O: -0.25*0.9682i
I: +0.25*0.9682i
L: -0.9682i*0.9682i = - 0.9375 i^2 = 0.9375
NoticeThe two middle terms (labled "O" and "I" ) cancel out. They are of opposite signs.
The final result is 0.9375 and 0.0625 add up to 1
Answer:
First option: The slope is negative for both functions.
Fourth option: The graph and the equation expressed are equivalent functions.
Step-by-step explanation:
<h3>
The missing graph is attached.</h3><h3>
</h3>
The equation of the line in Slope-Intercept form is:
Where "m" is the slope and "b" is the y-intercept.
Given the equation:
We can identify that:
Notice that the slope is negative.
We can observe in the graph that y-intercept of the other linear function is:
Then, we can substitute this y-intercept and the coordinates of a point on that line, into and solve for "m".
Choosing the point , we get:
Notice that the slope is negative.
Therefore, since the lines have the same slope and the same y-intercept, we can conclude that they are equivalent.
Answer:
i think its c
Step-by-step explanation: