Johnny should have thrown away the unused chemicals because they still could have mixed with the other chemicals and it could cause a reaction.
The answer is 0.405 M/s
- (1/3) d[O2]/dt = 1/2 d[N2]/dt
- d[O2]/dt = 3/2 d[N2]/dt
- d[O2]/dt = 3/2 × 0.27
- d[O2]/dt = 0.405 mol L^(-1) s^(-1)
The reaction produces 2.93 g H₂.
M_r: 133.34 2.016
2Al + 6HCl → 2AlCl₃ + 3H₂
<em>Moles of AlCl₃</em> = 129 g AlCl₃ × (1 mol AlCl₃/133.34 g AlCl₃) = 0.9675 mol AlCl₃
<em>Moles of H₂</em> = 0.9675 mol AlCl₃ × (3 mol H₂/2 mol AlCl₃) = 1.451 mol H₂
<em>Mass of H₂</em> = 1.451 mol H₂ × (2.016 g H₂/1 mol H₂) = 2.93 g H₂
Answer:
remain the same
Explanation:
The pH of the buffer system remain the same when 0.030 moles of strong acid are added because buffer system has the property to resist any change in the pH when acid or base is added to the solution. In buffer system, one molecule is responsible for neutralizing the pH of the solution by giving H+ or OH-.This molecule is known as buffer agent. If more base is added, the molecule provide H+ and when more acid is added to the solution, then the molecule add OH- to the solution.
Answer:
C. transition elements
Explanation:
Transition elements are groups of metallic elements that have partially filled d orbitals. They occupy the d-block of the periodic table (Group 3-12). Examples of elements that fall under this category are Nickel (Ni), Cobalt (Co), Copper (Cu), Zinc (Zn) etc. Transition metals have outstanding properties that distinguishes them from other elements.
One of these properties is their ability to form colored compounds due to their unfilled d electron shells. They form ions that are usually colored in solid compounds and in solution.