Answer:
V₀ₓ = 10.94 m/s
V₀y = 18.87 m/s
Explanation:
To find the launch velocity, we use 1st equation of motion.
Vf = Vi + at
where,
Vf = Final Velocity of Ball = Launch Speed = V₀ = ?
Vi = Initial Velocity = 0 m/s (Since ball was initially at rest)
a = acceleration = 376 m/s²
t = time = 0.058 s
Therefore,
V₀ = 0 m/s + (376 m/s²)(0.058 s)
V₀ = 21.81 m/s
Now, for x-component:
V₀ₓ = V₀ Cos θ
where,
V₀ₓ = x-component of launch velocity = ?
θ = Angle with horizontal = 59.9⁰
V₀ₓ = (21.81 m/s)(Cos 59.9°)
<u>V₀ₓ = 10.94 m/s</u>
<u></u>
for y-component:
V₀ₓ = V₀ Sin θ
where,
V₀y = y-component of launch velocity = ?
θ = Angle with horizontal = 59.9⁰
V₀y = (21.81 m/s)(Sin 59.9°)
<u>V₀y = 18.87 m/s</u>
<u></u>
Answer:
don't post irrelevant questions
Nitrogen gas has a molar mass of about 28.0134 g/mol. Then we have a starting amount of
(42 g) / (28.0134 g/mol) ≈ 1.4993 mol
of N₂.
At standard temperature and pressure, one mole of an ideal gas occupies a volume of about 22.4 L. Then 42 g, or 1.4993 mol, of N₂ takes up
(1.4993 mol) × (22.4 L/mol) ≈ 33.6 L
potential energy because it has the ability to do work
Explanation:
A rock resting high in a cliff is an example of potential energy because it has the ability to do work. This form of energy is called potential energy.
- Energy is defined as the ability to do work. To do work, force must applied using energy to move a body through a particular distance.
- A body at rest is not doing any work. This is the case with potential energy of the body on a high cliff.
- At the state of rest, it is not doing any work.
- The potential energy of this body expresses the ability of such body to do work.
Learn more:
Potential energy brainly.com/question/10770261
#learnwithBrainly