False! Because the acid rain it becomes a chemicals it does not air get into the rain and up the acidity levels.
Hope it helped you.
-Charlie
:)
Answer:
Resistance in the flash tube, 
Explanation:
It is given that,
Speed of the bullet, v = 500 m/s
Distance between one RC constant, d = 1 mm = 0.001 m
Capacitance, 
The time constant of RC circuit is given by :

R is the resistance in the flash tube
..........(1)
Speed of the bullet is given by total distance divided by total time taken as :




Equation (1) becomes :


So, the resistance in the flash tube is
. Hence, this is the required solution.
Answer:
See the answers below.
Explanation:
The cost of energy can be calculated by multiplying each given value, a dimensional analysis must be taken into account in order to calculate the total value of the cost in Rs.
![Cost=0.350[kW]*12[\frac{hr}{1day}]*30[days]*4.5[\frac{Rs}{kW*hr} ]=567[Rs]](https://tex.z-dn.net/?f=Cost%3D0.350%5BkW%5D%2A12%5B%5Cfrac%7Bhr%7D%7B1day%7D%5D%2A30%5Bdays%5D%2A4.5%5B%5Cfrac%7BRs%7D%7BkW%2Ahr%7D%20%5D%3D567%5BRs%5D)
The fuse can be calculated by knowing the amperage.

where:
P = power = 350 [W]
V = voltage = 240 [V]
I = amperage [amp]
Now clearing I from the equation above:
![I=P/V\\I=350/240\\I=1.458[amp]](https://tex.z-dn.net/?f=I%3DP%2FV%5C%5CI%3D350%2F240%5C%5CI%3D1.458%5Bamp%5D)
The fuse should be larger than the current of the circuit, i.e. about 2 [amp]
Answer:

Explanation:
given
wavelength of light λ = 479 nm
= 479 x 10⁻⁹ m
the angle
θ = 1.15 / 2 = 0.575°
using
condition for diffraction minimum ,
d sinθ = m λ
for first minimum m = 1
d sinθ = λ
therefore ,
slit width

hence, the width of the slit is equal to 
Answer:
You are asked to design a cylindrical steel rod 50.0 cm long, with a circular cross section, that will conduct 170.0 J/s from a furnace at 350.0 ∘C to a container of boiling water under 1 atmosphere.
Explanation:
Given Values:
L = 50 cm = 0.5 m
H = 170 j/s
To find the diameter of the rod, we have to find the area of the rod using the following formula.
Here Tc = 100.0° C
k = 50.2
H = k × A × ![\frac{[T_{H -}T_{C} ] }{L}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BT_%7BH%20-%7DT_%7BC%7D%20%5D%20%7D%7BL%7D)
Solving for A
A = ![\frac{H * L }{k * [ T_{H}- T_{C} ] }](https://tex.z-dn.net/?f=%5Cfrac%7BH%20%2A%20L%20%7D%7Bk%20%2A%20%5B%20T_%7BH%7D-%20T_%7BC%7D%20%5D%20%7D)
A = ![\frac{170 * 0.5}{50.2 * [ 350 - 100 ]}](https://tex.z-dn.net/?f=%5Cfrac%7B170%20%2A%200.5%7D%7B50.2%20%2A%20%5B%20350%20-%20100%20%5D%7D)
A =
= 6.77 ×
m²
Now Area of cylinder is :
A =
d²
solving for d:
d = 
d = 9.28 cm