In the given problem, we say various information's that are going to help us reach the ultimate answer to the question. Let us first write the information's that have been presented in front of us.
Mass of the car = 2000 kg
Velocity of the car = 25 m/s^2
Radius of the circle = 80 m
Now we already know the equation for calculating the centripetal force and that is
Centripetal Force = [mass * (velocity)^2]/Radius
= [2000 * (25)^2]/80
= (2000 * 625)/80
= 1250000/80
= 15625
So the centripetal force on the car is 15625 Newtons
Answer:
force is that push or pull of the body that change or tends to change the state of rest or uniform motion in a straight line.
Explanation:
hope it is helpful to u
Answer:
Direction of ship: 9.45° West of North
Ship's relative speed: 7.87m/s
Explanation:
A. Direction of ship: since horizontal of the velocity of boat relative to the ground is 0
Vx=0
Therefore, -VsSin∅+VcCos∅40°
Sin∅ = Vc/Vs × Cos 40°
Sin∅ = 1.5/7 ×Cos40°
Sin∅= 0.164
∅= Sin-¹ (0.164)
∅= 9.45° W of N
B. Ship's relative speed:
Vy= VsCos∅ + Vcsin40°
= 7Cos9.45° + 1.5sin40°
= 7×0.986 + 1.5×0.642
= 7.865
= 7.87m/s
I am almost sure it it (c)
Answer:
Magdeburg hemispheres are two half-spheres of equal size. Placing them together traps air between them. This air is merely trapped, and not compressed, so the pressure inside is the same as the pressure of the atmosphere outside the spheres. The spheres thus pull apart with nearly no resistance.