Answer:
20 cm
Explanation:
Given that a ball is released from a vertical height of 20 cm. It rolls down a "perfectly frictionless" ramp and up a similar ramp. What vertical height on the second ramp will the ball reach before it starts to roll back down?
Since it is perfectly frictionless, the Kinetic energy in which the ball is rolling will be equal to the potential energy at the edge of the ramp.
Therefore, the ball will reach 20 cm before it starts to roll back down.
Answer:
To share a positive experience she had with a pen pal
Explanation:
Just read the story :)
<h2>
Speed with which it return to its initial level is 100 m/s</h2>
Explanation:
We have equation of motion v² = u² + 2as
Initial velocity, u = 100 m/s
Acceleration, a = -9.81 m/s²
Final velocity, v = ?
Displacement, s = 0 m
Substituting
v² = u² + 2as
v² = 100² + 2 x -9.81 x 0
v² = 100²
v = ±100 m/s
+100 m/s is initial velocity and -100 m/s is final velocity.
Speed with which it return to its initial level is 100 m/s
Both, there are two different types of molecules to distinguish that