Answer:
<h3>The answer is 9 kg</h3>
Explanation:
To find the mass given the force and acceleration we use the formula

where
f is the force
a is the acceleration
We have
f = 18 N
a = 2 m/s²
We have

We have the final answer as
<h3>9 kg</h3>
Hope this helps you
Complete Question:
A basketball player tosses a basketball m=1kg straight up with an initial speed of v=7.5 m/s. He releases the ball at shoulder height h= 2.15m. Let gravitational potential energy be zero at ground level
a) Give the total mechanical energy of the ball E in terms of maximum height hn it reaches, the mass m, and the gravitational acceleration g.
b) What is the height, hn in meters?
Answer:
a) Energy = mghₙ
b) Height, hₙ = 5.02 m
Explanation:
a) Total energy in terms of maximum height
Let maximum height be hₙ
At maximum height, velocity, V=0
Total mechanical energy , E = mgh + 1/2 mV^2
Since V=0 at maximum height, the total energy in terms of maximum height becomes
Energy = mghₙ
b) Height, hₙ in meters
mghₙ = mgh + 1/2 mV^2
mghₙ = m(gh + 1/2 V^2)
Divide both sides by mg
hₙ = h + 0.5 (V^2)/g
h = 2.15m
g = 9.8 m/s^2
V = 7.5 m/s
hₙ = 2.15 + 0.5(7.5^2)/9.8
hₙ = 2.15 + 2.87
hₙ = 5.02 m
Answer:
Approximately
, assuming that
.
Explanation:
Let
and
denote the mass and acceleration of Spiderman, respectively.
There are two forces on Spiderman:
- Downward gravitational attraction from the earth:
. - Upward tension force from the strand of web
.
The directions of these two forces are exactly opposite of one another. Besides, because Spiderman is accelerating upwards, the magnitude of
(which points upwards) should be greater than that of
(which points downwards towards the ground.)
Subtract the smaller force from the larger one to find the net force on Spiderman:
.
On the other hand, apply Newton's Second Law of motion to find the value of the net force on Spiderman:
.
Combine these two equations to get:
.
Therefore:
.
By Newton's Third Law of motion, Spiderman would exert a force of the same size on the strand of web. Hence, the size of the force in the strand of the web should be approximately
(downwards.)
Answer:
Explanation:
we have to make charge inside the conductor zero because we know that electric field inside the conductor should be zero
so, the outer surface of the conductor should contain + 10 uC of charge and the inner surface contains -10 uC