1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
STALIN [3.7K]
3 years ago
6

Participating in __________ can improve flexibility.

Physics
1 answer:
riadik2000 [5.3K]3 years ago
6 0

Answer: Participating in all of the above can improve flexibility.

Explanation:

A practice that helps in improving or developing inherent power in order to bring peace and harmony to the body of a person is called yoga.

Yoga includes different postures that also help in providing flexibility to the body.

Pilates is another method of providing muscular strength and low impact flexibility to a human body.

Swimming also a good exercise that provides flexibility.

Thus, we can conclude that participating in all of the above can improve flexibility.

You might be interested in
A football punker attempts to kick the football so that it lands on the ground 67.0 m from where it is kicked and stays in the a
Flauer [41]

To solve this problem we will apply the linear motion kinematic equations. We will find the two components of velocity and finally by geometric and vector relations we will find both the angle and the magnitude of the vector. In the case of horizontal speed we have to

v_x = \frac{x}{t}

v_x = \frac{67}{4.5}

v_x = 14.89m/s

The vertical component of velocity is

-h = v_y t -\frac{1}{2} gt^2

Here,

h = Height

g = Gravitational acceleration

t = Time

v_y = Vertical component of velocity

-1.23 = v_y(4.5)-\frac{1}{2} (9.8)(4.5)^2

-1.23= 4.5v_y - 99.225

v_y = 21.77m/s

The direction of the velocity will be given by the tangent of the components, then

tan\theta = \frac{v_y}{v_x}

\theta = tan^{-1} (\frac{21.77}{14.89})

\theta = 55.59\°

The magnitude is given vectorially as,

|V| = \sqrt{v_x^2+v_y^2}

|V| = \sqrt{14.89^2 +21.77^2}

|V| = 26.37m/s

Therefore the angle is 55.59° and the velocity is 26.37m/s

6 0
3 years ago
Two cars collide and come to a complete stop. where did all of their energy go?
MA_775_DIABLO [31]
Most of the energy will be absorbed by the materials that make up the cars, causing them to deform. The energy will also be converted into sound energy, causing a loud bang upon collision. Also, some energy will be converted to thermal energy, which will cause the cars to heat up slightly.
3 0
3 years ago
Please help, it's grade 7 science. :)
xeze [42]

Answer:

The air in the soccer ball in cold weather will decrease slightly in size and it becomes flat. The air in the soccer ball in hot weather will seem flat because the low preasure leads to lower bounce in the ball.

The metal door frame in cold weather contracts and the wood contracts more in the winter. The metal door frame in hot weather thermal blowing can occur on the outer surface of the metal door frame. Hopefully that is what you were looking for have a good day.

4 0
3 years ago
Read 2 more answers
A rock thrown with speed 12.0 m/s and launch angle 30.0 ∘ (above the horizontal) travels a horizontal distance of d = 15.5 m bef
Dimas [21]

Supposing there's no air resistance, horizontal velocity is constant, which makes it very easy to solve for the amount of time that the rock was in the air.


Initial horizontal velocity is: <span>
cos(30 degrees) * 12m/s = 10.3923m/s 

15.5m / 10.3923m/s = 1.49s 

So the rock was in the air for 1.49 seconds. </span>

<span>

Now that we know that, we can use the following kinematics equation: 

d = v i * t + 1/2 * a * t^2 

Where d is the difference in y position, t is the time that the rock was in the air, and a is the vertical acceleration: -9.80m/s^2. </span>

<span>
Initial vertical velocity is sin(30 degrees) * 12m/s = 6 m/s 

So: 

d = 6 * 1.49 + (1/2) * (-9.80) * (1.49)^2 
d = 8.94 + -10.89</span>

d = -1.95<span>

<span>This means that the initial y position is 1.95 m higher than where the rock lands. </span></span>

5 0
3 years ago
A weightlifter lifts a 1400 N barbell 2.5 meters. Calculate the work done during the lift
Andre45 [30]

Answer:

Force = 1400N

Displacement = 2.5 m

work done = F×D

=1400×2.5

= 3500 joule

8 0
4 years ago
Read 2 more answers
Other questions:
  • PLEASE HELP WILL GIVE BRAINLIEST!!!!
    14·1 answer
  • Which is an advantage of AC over DC power?
    10·2 answers
  • 6. A 7-kg bowling ball moving at 6.0 m/s strikes a 1-kg bowling pin. 11 we van
    6·1 answer
  • What is the speed of light in a vacuum
    7·2 answers
  • A net force of 500 newtons causes
    14·1 answer
  • A car covers 400 km in an hour towards west .calculate the velocity​
    12·1 answer
  • At the local playground, a 21-kg child sits on the right end of a horizontal teeter-totter, 1.8 m from the pivot point. On the l
    6·1 answer
  • Una lente forma una imagen de un objeto, el cual está a 16.0 cm de la lente. La imagen está a 12.0 cm de la lente del mismo lado
    10·1 answer
  • Use correct alternative to complete the indirect speech sentence​
    6·1 answer
  • A TMS (transcranial magnetic stimulation) device creates very rapidly changing magnetic fields. The field near a typical pulsed-
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!