The value of P(4, 6) when the two number cubes are tossed is 1/36
<h3>How to determine the probability?</h3>
On each number cube, we have:
Sample space = {1, 2, 3, 4, 5, 6}
The individual probabilities are then represented as:
P(4) =1/6
P(6) =1/6
The value of P(4, 6) when the two number cubes are tossed is:
P(4, 6) = P(4) * P(6)
This gives
P(4, 6) = 1/6 * 1/6
Evaluate
P(4, 6) = 1/36
Hence, the value of P(4, 6) when the two number cubes are tossed is 1/36
Read more about probability at:
brainly.com/question/24756209
#SPJ1
Answer:
24) $495
25) 14%
26) 25/X = 83/100
27) 0.7p
28) x + .085x and 1.085x
29) $221.90
30) $24.10
31) $6.13
32) 40%
Step-by-step explanation:
24) 600 - (600 × 0.25) = 450
450 × 1.10 = 495
25) (106 - 93) ÷ 93 = 0.13978
0.13978 × 100 = 13.978 ~ 14
27) 1.0 - 0.3 = 0.7
28) 1.00 + 0.085 = 1.085
29) 100% - 15% = 85%
240 × 0.85 = 204
204 × 1.0875 = 221.85
30) 25.89 × 4 = 103.56
103.56 + 179.99 = 283.55
283.55 × 0.085 = 24.10175
31) 8.75 × 0.70 = 6.125
32) 80 - (80 × 0.40) = 48
Answer:
4 trays should he prepared, if the owner wants a service level of at least 95%.
Step-by-step explanation:
We are given the following information in the question:
Mean, μ = 5
Standard Deviation, σ = 1
We are given that the distribution of demand score is a bell shaped distribution that is a normal distribution.
Formula:

P(X > x) = 0.95
We have to find the value of x such that the probability is 0.95
P(X > x)
Calculation the value from standard normal z table, we have,
Hence, 4 trays should he prepared, if the owner wants a service level of at least 95%.
For this case, the first thing we must do is define a variable.
We have then:
x: unknown number
We now write the equation that models the problem:

From here, we clear the value of x.
We multiply both sides of the equation by 2:

We subtract 30 on both sides of the equation:

Answer:
The value of the unknown number is given by:

Answer:
A
Step-by-step explanation:
The green is the starting place, when you move from a point on the green triangle to the blue one, you go 5 to the left and 3 down.