In order to determine the acceleration of the block, use the following formula:

Moreover, remind that for an object attached to a spring the magnitude of the force acting over a mass is given by:

Then, you have:

by solving for a, you obtain:

In this case, you have:
k: spring constant = 100N/m
m: mass of the block = 200g = 0.2kg
x: distance related to the equilibrium position = 14cm - 12cm = 2cm = 0.02m
Replace the previous values of the parameters into the expression for a:

Hence, the acceleration of the block is 10 m/s^2
It's inertia. A rule that you see every day, for example a brick will stay in the same spot unless a force acts on it.
Answer:
<h2>0.2 m/s²</h2>
Explanation:
The acceleration of an object given it's mass and the force acting on it can be found by using the formula

f is the force
m is the mass
From the question we have

We have the final answer as
<h3>0.2 m/s²</h3>
Hope this helps you
Answer:
995.12 N/C
Explanation:
R = 9 cm = 0.09 m
σ = 9 nC/m^2 = 9 x 10^-9 C/m^2
r = 9.1 cm = 0.091 m
q = σ x 4π R² = 9 x 10^-9 x 4 x 3.14 x 0.09 x 0.09 = 9.156 x 10^-10 C
E = kq / r^2
E = ( 9 x 10^9 x 9.156 x 10^-10) / (0.091 x 0.091)
E = 995.12 N/C
At sea level, the size amid the 2 alkanes lets for pentane to simmer at a lower temperature than hexane. Phenol has a higher boiling point due to hydrogen bonding High altitude would have the same order while low pressure only cuts the temperature at which a solvent boils. Boiling has to do with molecular size, the occurrence/nonappearance of hydrogen bonds, and other steric issues.
So the answer would be pentane high altitude, hexane high altitude, hexane sea level, hexanol sea level. In order of boil first to boil last. This is clarified because altitude has a better effect on vapor pressure (and hence boiling points) than inter-molecular forces.