That information describes the plane's speed.
If he had also told them what direction they were flying, then
they would have been able to put the two pieces of information
together, and they would know the plane's velocity.
Answer:
1.843 x 10^-5 C
Explanation:
<u><em>Givens:
</em></u>
It is given that the air starts ionizing when the electric field in the air exceeds a magnitude of 3 x 10^6 N/C, which means that the max electric field can stand without forming a spark is 3 x 10^6 N/C.
Also it is given that the radius of the disk is 50 cm, it is required to find out the max amount of charge that the disk can hold without forming spark, which means the charge that would produce the max magnitude of the electric field that air can stand without forming spark, and since we know that the electric field in between 2 disk "Capacitor" is given by the following equation
E = (Q/A)/∈o (1)
Where,
Q: total charge on the disk.
A: the area of the disk.
<u><em>Calculations: </em></u>
We want to find the quantity of charge on the disk that would produce an electric field of 3 x 10^6 N/C, knowing the radius of the disk we can find the cross-section of the disk, thus substituting in equation (1) we find the maximum quantity of charge the disk can hold
Q = EA∈o
= (3 x 10^6) x (π*0.50) x (8.85 x 10^-12)
= 1.843 x 10^-5 C
note:
calculations maybe wrong but method is correct
D = 40.5 g / 15.0 mL<span>d = 2.70 g/mL</span>
Answer:
you absolute buffoon Use Ohms' Law: V = RI
V = (1x10^3)(5x10^-3) = 5 volts
Yes, this is in the range of normal household voltages.
Explanation:
Answer:
The fraction fraction of the final energy is stored in an initially uncharged capacitor after it has been charging for 3.0 time constants is

Explanation:
From the question we are told that
The time constant 
The potential across the capacitor can be mathematically represented as

Where
is the voltage of the capacitor when it is fully charged
So at


Generally energy stored in a capacitor is mathematically represented as

In this equation the energy stored is directly proportional to the the square of the potential across the capacitor
Now since capacitance is constant at
The energy stored can be evaluated at as


Hence the fraction of the energy stored in an initially uncharged capacitor is
