Answer:
0
Explanation:
the momentum will always be 0 when it is at rest because the object isnt moving!
Hope this helped!
Answer:
The displacement in t = 0,
y (0) = - 0.18 m
Explanation:
Given f = 40 Hz , A = 0.25m , μ = 0.02 kg / m, T = 20.48 N
v = √ T / μ
v = √20.48 N / 0.02 kg /m = 32 m/s
λ = v / f
λ = 32 m/s / 40 Hz = 0.8
K = 2 π / λ
K = 2π / 0.8 = 7.854
φ = X * 360 / λ
φ = 0.5 * 360 / 0.8 = 225 °
Using the model of y' displacement
y (t) = A* sin ( w * t - φ )
When t = 0
y (0) = 0.25 m *sin ( w*(0) - 225 )
y (0) = 0.25 * -0.707
y (0) = - 0.18 m
Answer:
Here is the solution hope it helps:)
<span>The answer is -0.8 m/s. We know acceleration is the average of final minus initial velocity over time (a = (vf-v0)/t). We also know that Force is equal to Mass times Acceleration (F = ma). Using our force equation, we know that the acceleration we get is negative 8.8 (-8.8). The force is acting in the opposite direction of the rugby player, hence the negative sign. From there, plug in that number for a in the velocity equation, and solve for vf, as v0 and t are known. We get 0.8 m/s in the opposite direction that the player was running.</span>
14 because the horses name is friday and sprite cranberry is coming out with a new jersey